1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
#!/usr/bin/env python
"""
Transmit N simultaneous narrow band FM signals.
They will be centered at the frequency specified on the command line,
and will spaced at 25kHz steps from there.
The program opens N files with names audio-N.dat where N is in [0,7].
These files should contain floating point audio samples in the range [-1,1]
sampled at 32kS/sec. You can create files like this using
audio_to_file.py
"""
from gnuradio import gr, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import usrp_dbid
import math
import sys
from gnuradio.wxgui import stdgui, fftsink
from gnuradio import tx_debug_gui
import wx
########################################################
# instantiate one transmit chain for each call
class pipeline(gr.hier_block):
def __init__(self, fg, filename, lo_freq, audio_rate, if_rate):
src = gr.file_source (gr.sizeof_float, filename, True)
fmtx = blks.nbfm_tx (fg, audio_rate, if_rate,
max_dev=5e3, tau=75e-6)
# Local oscillator
lo = gr.sig_source_c (if_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
lo_freq, #frequency
1.0, # amplitude
0) # DC Offset
mixer = gr.multiply_cc ()
fg.connect (src, fmtx, (mixer, 0))
fg.connect (lo, (mixer, 1))
gr.hier_block.__init__(self, fg, src, mixer)
class fm_tx_graph (stdgui.gui_flow_graph):
def __init__(self, frame, panel, vbox, argv):
MAX_CHANNELS = 7
stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)
parser = OptionParser (option_class=eng_option)
parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None,
help="select USRP Tx side A or B")
parser.add_option("-f", "--freq", type="eng_float", default=None,
help="set Tx frequency to FREQ [required]", metavar="FREQ")
parser.add_option("-n", "--nchannels", type="int", default=4,
help="number of Tx channels [1,4]")
parser.add_option("","--debug", action="store_true", default=False,
help="Launch Tx debugger")
(options, args) = parser.parse_args ()
if len(args) != 0:
parser.print_help()
sys.exit(1)
if options.nchannels < 1 or options.nchannels > MAX_CHANNELS:
sys.stderr.write ("fm_tx4: nchannels out of range. Must be in [1,%d]\n" % MAX_CHANNELS)
sys.exit(1)
if options.freq is None:
sys.stderr.write("fm_tx4: must specify frequency with -f FREQ\n")
parser.print_help()
sys.exit(1)
# ----------------------------------------------------------------
# Set up constants and parameters
self.u = usrp.sink_c () # the USRP sink (consumes samples)
self.dac_rate = self.u.dac_rate() # 128 MS/s
self.usrp_interp = 400
self.u.set_interp_rate(self.usrp_interp)
self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
self.sw_interp = 10
self.audio_rate = self.usrp_rate / self.sw_interp # 32 kS/s
# determine the daughterboard subdevice we're using
if options.tx_subdev_spec is None:
options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)
m = usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec)
#print "mux = %#04x" % (m,)
self.u.set_mux(m)
self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
print "Using TX d'board %s" % (self.subdev.side_and_name(),)
self.subdev.set_gain(self.subdev.gain_range()[1]) # set max Tx gain
self.set_freq(options.freq)
self.subdev.set_enable(True) # enable transmitter
sum = gr.add_cc ()
# Instantiate N NBFM channels
step = 25e3
offset = (0 * step, 1 * step, -1 * step, 2 * step, -2 * step, 3 * step, -3 * step)
for i in range (options.nchannels):
t = pipeline (self, "audio-%d.dat" % (i % 4), offset[i],
self.audio_rate, self.usrp_rate)
self.connect (t, (sum, i))
gain = gr.multiply_const_cc (4000.0 / options.nchannels)
# connect it all
self.connect (sum, gain)
self.connect (gain, self.u)
# plot an FFT to verify we are sending what we want
if 1:
post_mod = fftsink.fft_sink_c(self, panel, title="Post Modulation",
fft_size=512, sample_rate=self.usrp_rate,
y_per_div=20, ref_level=40)
self.connect (sum, post_mod)
vbox.Add (post_mod.win, 1, wx.EXPAND)
if options.debug:
self.debugger = tx_debug_gui.tx_debug_gui(self.subdev)
self.debugger.Show(True)
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital up converter. Finally, we feed
any residual_freq to the s/w freq translater.
"""
r = self.u.tune(self.subdev._which, self.subdev, target_freq)
if r:
print "r.baseband_freq =", eng_notation.num_to_str(r.baseband_freq)
print "r.dxc_freq =", eng_notation.num_to_str(r.dxc_freq)
print "r.residual_freq =", eng_notation.num_to_str(r.residual_freq)
print "r.inverted =", r.inverted
# Could use residual_freq in s/w freq translator
return True
return False
def main ():
app = stdgui.stdapp (fm_tx_graph, "Multichannel FM Tx")
app.MainLoop ()
if __name__ == '__main__':
main ()
|