1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
#!/usr/bin/env python
#
# Copyright 2009 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, blks2
import os
import scipy, pylab
from scipy import fftpack
from pylab import mlab
import time
#print os.getpid()
#raw_input()
class pfb_top_block(gr.top_block):
def __init__(self):
gr.top_block.__init__(self)
self._N = 100000 # number of samples to use
self._fs = 2000 # initial sampling rate
self._interp = 5 # Interpolation rate for PFB interpolator
self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler
# Frequencies of the signals we construct
freq1 = 100
freq2 = 200
# Create a set of taps for the PFB interpolator
# This is based on the post-interpolation sample rate
self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50,
attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
# Create a set of taps for the PFB arbitrary resampler
# The filter size is the number of filters in the filterbank; 32 will give very low side-lobes,
# and larger numbers will reduce these even farther
# The taps in this filter are based on a sampling rate of the filter size since it acts
# internally as an interpolator.
flt_size = 32
self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150,
attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
# Calculate the number of taps per channel for our own information
tpc = scipy.ceil(float(len(self._taps)) / float(self._interp))
print "Number of taps: ", len(self._taps)
print "Number of filters: ", self._interp
print "Taps per channel: ", tpc
# Create a couple of signals at different frequencies
self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
self.signal = gr.add_cc()
self.head = gr.head(gr.sizeof_gr_complex, self._N)
# Construct the PFB interpolator filter
self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
# Construct the PFB arbitrary resampler filter
self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, flt_size)
self.snk_i = gr.vector_sink_c()
#self.pfb_ar.pfb.print_taps()
#self.pfb.pfb.print_taps()
# Connect the blocks
self.connect(self.signal1, self.head, (self.signal,0))
self.connect(self.signal2, (self.signal,1))
self.connect(self.signal, self.pfb)
self.connect(self.signal, self.pfb_ar)
self.connect(self.signal, self.snk_i)
# Create the sink for the interpolated signals
self.snk1 = gr.vector_sink_c()
self.snk2 = gr.vector_sink_c()
self.connect(self.pfb, self.snk1)
self.connect(self.pfb_ar, self.snk2)
def main():
tb = pfb_top_block()
tstart = time.time()
tb.run()
tend = time.time()
print "Run time: %f" % (tend - tstart)
if 1:
fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
Ns = 10000
Ne = 10000
fftlen = 8192
winfunc = scipy.blackman
# Plot input signal
fs = tb._fs
d = tb.snk_i.data()[Ns:Ns+Ne]
sp1_f = fig1.add_subplot(2, 1, 1)
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
p1_f = sp1_f.plot(f_in, X_in, "b")
sp1_f.set_xlim([min(f_in), max(f_in)+1])
sp1_f.set_ylim([-200.0, 50.0])
sp1_f.set_title("Input Signal", weight="bold")
sp1_f.set_xlabel("Frequency (Hz)")
sp1_f.set_ylabel("Power (dBW)")
Ts = 1.0/fs
Tmax = len(d)*Ts
t_in = scipy.arange(0, Tmax, Ts)
x_in = scipy.array(d)
sp1_t = fig1.add_subplot(2, 1, 2)
p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
#p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
sp1_t.set_ylim([-2.5, 2.5])
sp1_t.set_title("Input Signal", weight="bold")
sp1_t.set_xlabel("Time (s)")
sp1_t.set_ylabel("Amplitude")
# Plot output of PFB interpolator
fs_int = tb._fs*tb._interp
sp2_f = fig2.add_subplot(2, 1, 1)
d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size))
p2_f = sp2_f.plot(f_o, X_o, "b")
sp2_f.set_xlim([min(f_o), max(f_o)+1])
sp2_f.set_ylim([-200.0, 50.0])
sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
sp2_f.set_xlabel("Frequency (Hz)")
sp2_f.set_ylabel("Power (dBW)")
Ts_int = 1.0/fs_int
Tmax = len(d)*Ts_int
t_o = scipy.arange(0, Tmax, Ts_int)
x_o1 = scipy.array(d)
sp2_t = fig2.add_subplot(2, 1, 2)
p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
#p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
sp2_t.set_ylim([-2.5, 2.5])
sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
sp2_t.set_xlabel("Time (s)")
sp2_t.set_ylabel("Amplitude")
# Plot output of PFB arbitrary resampler
fs_aint = tb._fs * tb._ainterp
sp3_f = fig3.add_subplot(2, 1, 1)
d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size))
p3_f = sp3_f.plot(f_o, X_o, "b")
sp3_f.set_xlim([min(f_o), max(f_o)+1])
sp3_f.set_ylim([-200.0, 50.0])
sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
sp3_f.set_xlabel("Frequency (Hz)")
sp3_f.set_ylabel("Power (dBW)")
Ts_aint = 1.0/fs_aint
Tmax = len(d)*Ts_aint
t_o = scipy.arange(0, Tmax, Ts_aint)
x_o2 = scipy.array(d)
sp3_f = fig3.add_subplot(2, 1, 2)
p3_f = sp3_f.plot(t_o, x_o2.real, "b-o")
p3_f = sp3_f.plot(t_o, x_o1.real, "m-o")
#p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o")
sp3_f.set_ylim([-2.5, 2.5])
sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
sp3_f.set_xlabel("Time (s)")
sp3_f.set_ylabel("Amplitude")
pylab.show()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass
|