summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/pfb/fmtest.py
blob: 97df0e0f56202a2ea1c09949936252af0d0893e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
#


from gnuradio import gr, eng_notation
from gnuradio import blks2
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import math, time, sys, scipy, pylab
from scipy import fftpack

class fmtx(gr.hier_block2):
    def __init__(self, lo_freq, audio_rate, if_rate):

        gr.hier_block2.__init__(self, "build_fm",
                                gr.io_signature(1, 1, gr.sizeof_float),      # Input signature
                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
        
        # Local oscillator
        lo = gr.sig_source_c (if_rate,        # sample rate
                              gr.GR_SIN_WAVE, # waveform type
                              lo_freq,        #frequency
                              1.0,            # amplitude
                              0)              # DC Offset
        mixer = gr.multiply_cc ()
    
        self.connect (self, fmtx, (mixer, 0))
        self.connect (lo, (mixer, 1))
        self.connect (mixer, self)

class fmtest(gr.top_block):
    def __init__(self):
        gr.top_block.__init__(self)

        self._nsamples = 1000000
        self._audio_rate = 8000

        # Set up N channels with their own baseband and IF frequencies
        self._N = 5
        chspacing = 16000
        freq = [10, 20, 30, 40, 50]
        f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]

        self._if_rate = 4*self._N*self._audio_rate

        # Create a signal source and frequency modulate it
        self.sum = gr.add_cc ()
        for n in xrange(self._N):
            sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
            fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
            self.connect(sig, fm)
            self.connect(fm, (self.sum, n))

        self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
        self.snk_tx = gr.vector_sink_c()
        self.channel = blks2.channel_model(0.1)

        self.connect(self.sum, self.head, self.channel, self.snk_tx)


        # Design the channlizer
        self._M = 10
        bw = chspacing/2.0
        t_bw = chspacing/10.0
        self._chan_rate = self._if_rate / self._M
        self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw, 
                                          attenuation_dB=100,
                                          window=gr.firdes.WIN_BLACKMAN_hARRIS)
        tpc = math.ceil(float(len(self._taps)) /  float(self._M))

        print "Number of taps:     ", len(self._taps)
        print "Number of channels: ", self._M
        print "Taps per channel:   ", tpc
        
        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
        
        self.connect(self.channel, self.pfb)
        
        # Create a file sink for each of M output channels of the filter and connect it
        self.fmdet = list()
        self.squelch = list()
        self.snks = list()
        for i in xrange(self._M):
            self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
            self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
            self.snks.append(gr.vector_sink_f())
            self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])

    def num_tx_channels(self):
        return self._N

    def num_rx_channels(self):
        return self._M

def main():

    fm = fmtest()

    tstart = time.time()
    fm.run()
    tend = time.time()

    if 1:
        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")

        Ns = 10000
        Ne = 100000

        fftlen = 8192
        winfunc = scipy.blackman

        # Plot transmitted signal
        fs = fm._if_rate

        d = fm.snk_tx.data()[Ns:Ns+Ne]
        sp1_f = fig1.add_subplot(2, 1, 1)

        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
                           window = lambda d: d*winfunc(fftlen),
                           visible=False)
        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
        p1_f = sp1_f.plot(f_in, X_in, "b")
        sp1_f.set_xlim([min(f_in), max(f_in)+1]) 
        sp1_f.set_ylim([-120.0, 20.0]) 

        sp1_f.set_title("Input Signal", weight="bold")
        sp1_f.set_xlabel("Frequency (Hz)")
        sp1_f.set_ylabel("Power (dBW)")

        Ts = 1.0/fs
        Tmax = len(d)*Ts
        
        t_in = scipy.arange(0, Tmax, Ts)
        x_in = scipy.array(d)
        sp1_t = fig1.add_subplot(2, 1, 2)
        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
        sp1_t.set_ylim([-5, 5])

        # Set up the number of rows and columns for plotting the subfigures
        Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
        Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
        if(fm.num_rx_channels() % Ncols != 0):
            Nrows += 1

        # Plot each of the channels outputs. Frequencies on Figure 2 and
        # time signals on Figure 3
        fs_o = fm._audio_rate
        for i in xrange(len(fm.snks)):
            # remove issues with the transients at the beginning
            # also remove some corruption at the end of the stream
            #    this is a bug, probably due to the corner cases
            d = fm.snks[i].data()[Ns:Ne]

            sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
            X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
                               window = lambda d: d*winfunc(fftlen),
                               visible=False)
            #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
            X_o = 10.0*scipy.log10(abs(X))
            #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
            f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
            p2_f = sp2_f.plot(f_o, X_o, "b")
            sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) 
            sp2_f.set_ylim([-120.0, 20.0]) 
            sp2_f.grid(True)

            sp2_f.set_title(("Channel %d" % i), weight="bold")
            sp2_f.set_xlabel("Frequency (kHz)")
            sp2_f.set_ylabel("Power (dBW)")


            Ts = 1.0/fs_o
            Tmax = len(d)*Ts
            t_o = scipy.arange(0, Tmax, Ts)

            x_t = scipy.array(d)
            sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
            p2_t = sp2_t.plot(t_o, x_t.real, "b")
            p2_t = sp2_t.plot(t_o, x_t.imag, "r")
            sp2_t.set_xlim([min(t_o), max(t_o)+1]) 
            sp2_t.set_ylim([-1, 1]) 

            sp2_t.set_xlabel("Time (s)")
            sp2_t.set_ylabel("Amplitude")


        pylab.show()


if __name__ == "__main__":
    main()