summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/pfb/channelize.py
blob: f845c05c6ff1ead9d36d144d537bc473b8df186b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python
#
# Copyright 2009 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 

from gnuradio import gr, blks2
import os, time
import scipy, pylab
from scipy import fftpack
from pylab import mlab

class pfb_top_block(gr.top_block):
    def __init__(self):
        gr.top_block.__init__(self)

        self._N = 2000000        # number of samples to use
        self._fs = 9000          # initial sampling rate
        self._M = 9              # Number of channels to channelize

        # Create a set of taps for the PFB channelizer
        self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50, 
                                          attenuation_dB=100, window=gr.firdes.WIN_BLACKMAN_hARRIS)

        # Calculate the number of taps per channel for our own information
        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
        print "Number of taps:     ", len(self._taps)
        print "Number of channels: ", self._M
        print "Taps per channel:   ", tpc
        
        # Create a set of signals at different frequencies
        #   freqs lists the frequencies of the signals that get stored 
        #   in the list "signals", which then get summed together
        self.signals = list()
        self.add = gr.add_cc()
        freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4080]
        for i in xrange(len(freqs)):
            self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
            self.connect(self.signals[i], (self.add,i))

        self.head = gr.head(gr.sizeof_gr_complex, self._N)

        # Construct the channelizer filter
        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)

        # Construct a vector sink for the input signal to the channelizer
        self.snk_i = gr.vector_sink_c()

        # Connect the blocks
        self.connect(self.add, self.head, self.pfb)
        self.connect(self.add, self.snk_i)

        # Create a vector sink for each of M output channels of the filter and connect it
        self.snks = list()
        for i in xrange(self._M):
            self.snks.append(gr.vector_sink_c())
            self.connect((self.pfb, i), self.snks[i])
                             

def main():
    tstart = time.time()
    
    tb = pfb_top_block()
    tb.run()

    tend = time.time()
    print "Run time: %f" % (tend - tstart)

    if 1:
        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
        
        Ns = 1000
        Ne = 10000

        fftlen = 8192
        winfunc = scipy.blackman
        fs = tb._fs

        # Plot the input signal on its own figure
        d = tb.snk_i.data()[Ns:Ne]
        spin_f = fig_in.add_subplot(2, 1, 1)

        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
                          window = lambda d: d*winfunc(fftlen),
                          scale_by_freq=True)
        X_in = 10.0*scipy.log10(abs(X))
        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
        pin_f = spin_f.plot(f_in, X_in, "b")
        spin_f.set_xlim([min(f_in), max(f_in)+1]) 
        spin_f.set_ylim([-200.0, 50.0]) 

        spin_f.set_title("Input Signal", weight="bold")
        spin_f.set_xlabel("Frequency (Hz)")
        spin_f.set_ylabel("Power (dBW)")


        Ts = 1.0/fs
        Tmax = len(d)*Ts
        
        t_in = scipy.arange(0, Tmax, Ts)
        x_in = scipy.array(d)
        spin_t = fig_in.add_subplot(2, 1, 2)
        pin_t = spin_t.plot(t_in, x_in.real, "b")
        pin_t = spin_t.plot(t_in, x_in.imag, "r")

        spin_t.set_xlabel("Time (s)")
        spin_t.set_ylabel("Amplitude")

        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
        Nrows = int(scipy.floor(tb._M / Ncols))
        if(tb._M % Ncols != 0):
            Nrows += 1

        # Plot each of the channels outputs. Frequencies on Figure 2 and
        # time signals on Figure 3
        fs_o = tb._fs / tb._M
        Ts_o = 1.0/fs_o
        Tmax_o = len(d)*Ts_o
        for i in xrange(len(tb.snks)):
            # remove issues with the transients at the beginning
            # also remove some corruption at the end of the stream
            #    this is a bug, probably due to the corner cases
            d = tb.snks[i].data()[Ns:Ne]

            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
                              window = lambda d: d*winfunc(fftlen),
                              scale_by_freq=True)
            X_o = 10.0*scipy.log10(abs(X))
            f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
            p2_f = sp1_f.plot(f_o, X_o, "b")
            sp1_f.set_xlim([min(f_o), max(f_o)+1]) 
            sp1_f.set_ylim([-200.0, 50.0]) 

            sp1_f.set_title(("Channel %d" % i), weight="bold")
            sp1_f.set_xlabel("Frequency (Hz)")
            sp1_f.set_ylabel("Power (dBW)")

            x_o = scipy.array(d)
            t_o = scipy.arange(0, Tmax_o, Ts_o)
            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
            p2_o = sp2_o.plot(t_o, x_o.real, "b")
            p2_o = sp2_o.plot(t_o, x_o.imag, "r")
            sp2_o.set_xlim([min(t_o), max(t_o)+1]) 
            sp2_o.set_ylim([-2, 2]) 

            sp2_o.set_title(("Channel %d" % i), weight="bold")
            sp2_o.set_xlabel("Time (s)")
            sp2_o.set_ylabel("Amplitude")

        pylab.show()


if __name__ == "__main__":
    try:
        main()
    except KeyboardInterrupt:
        pass