1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
#!/usr/bin/env python
#
# Copyright 2004,2005,2006 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import math
from gnuradio import gr
from gnuradio import audio
from gnuradio.eng_option import eng_option
from optparse import OptionParser
class ofdm_receiver(gr.hier_block):
def __init__(self, fg, fft_length, symbol_length, snr):
self.input = gr.add_const_cc(0) # Kluge that goes away with hier_block2
self.fg = fg
cpsize = symbol_length - fft_length;
SNR = 10.0**(snr/10.0)
rho = SNR / (SNR + 1.0)
# ML Sync
# Energy Detection from ML Sync
# Create a delay line
delayline = [0.0 for i in range(fft_length+1)]
delayline[fft_length] = 1.0
self.delay = gr.fir_filter_ccf(1,delayline)
self.fg.connect(self.input, self.delay)
# magnitude squared blocks
self.magsqrd1 = gr.complex_to_mag_squared()
self.magsqrd2 = gr.complex_to_mag_squared()
self.adder = gr.add_ff()
moving_sum_taps = [rho/2 for i in range(cpsize)]
self.moving_sum_filter = gr.fir_filter_fff(1,moving_sum_taps)
self.fg.connect(self.input,self.magsqrd1)
self.fg.connect(self.delay,self.magsqrd2)
self.fg.connect(self.magsqrd1,(self.adder,0))
self.fg.connect(self.magsqrd2,(self.adder,1))
self.fg.connect(self.adder,self.moving_sum_filter)
# Correlation from ML Sync
self.conjg = gr.conjugate_cc();
self.mixer = gr.multiply_cc();
movingsum2_taps = [1.0 for i in range(cpsize)]
self.movingsum2 = gr.fir_filter_ccf(1,movingsum2_taps)
# Correlator data handler
self.c2mag = gr.complex_to_mag()
self.angle = gr.complex_to_arg()
self.fg.connect(self.input,(self.mixer,1))
self.fg.connect(self.delay,self.conjg,(self.mixer,0))
self.fg.connect(self.mixer,self.movingsum2,self.c2mag)
self.fg.connect(self.movingsum2,self.angle)
# ML Sync output arg, need to find maximum point of this
self.diff = gr.sub_ff()
self.fg.connect(self.c2mag,(self.diff,0))
self.fg.connect(self.moving_sum_filter,(self.diff,1))
#ML measurements input to sampler block and detect
nco_sensitivity = 1.0/fft_length
self.f2c = gr.float_to_complex()
self.sampler = gr.ofdm_sampler(fft_length,symbol_length)
self.pkt_detect = gr.peak_detector_ff(0.2, 0.25, 30, 0.0001)
self.dpll = gr.dpll_ff(float(symbol_length),0.01)
self.sample_and_hold = gr.sample_and_hold_ff()
self.nco = gr.frequency_modulator_fc(nco_sensitivity)
self.inv = gr.multiply_const_ff(-1)
self.sigmix = gr.multiply_cc()
# Mix the signal with an NCO controlled by the sync loop
self.fg.connect(self.input, (self.sigmix,0))
self.fg.connect(self.nco, (self.sigmix,1))
self.fg.connect(self.sigmix, (self.sampler,0))
sample_trigger = 0
if sample_trigger:
# for testing
peak_null = gr.null_sink(gr.sizeof_float)
data = 640*[0,]
data[639] = 1
peak_trigger = gr.vector_source_f(data, True)
self.fg.connect(self.pkt_detect, peak_null)
self.fg.connect(peak_trigger, self.f2c, (self.sampler,1))
self.fg.connect(peak_trigger, (self.sample_and_hold,1))
# use the sync loop values to set the sampler and the NCO
# self.diff = theta
# self.angle = epsilon
self.fg.connect(self.diff, self.pkt_detect)
use_dpll = 1
if not sample_trigger:
if use_dpll:
self.fg.connect(self.pkt_detect, self.dpll,self.f2c, (self.sampler,1))
self.fg.connect(self.dpll, (self.sample_and_hold,1))
if not use_dpll:
self.fg.connect(self.pkt_detect, self.f2c, (self.sampler,1))
self.fg.connect(self.pkt_detect, (self.sample_and_hold,1))
self.fg.connect(self.angle, (self.sample_and_hold,0))
self.fg.connect(self.sample_and_hold, self.inv, self.nco)
if 0:
self.fg.connect(self.diff, gr.file_sink(gr.sizeof_float, "theta_f.dat"))
self.fg.connect(self.angle, gr.file_sink(gr.sizeof_float, "epsilon_f.dat"))
if use_dpll:
self.fg.connect(self.dpll, gr.file_sink(gr.sizeof_float, "dpll_pulses.dat"))
if sample_trigger:
self.fg.connect(peak_trigger, gr.file_sink(gr.sizeof_float, "peaks_f.dat"))
else:
self.fg.connect(self.pkt_detect, gr.file_sink(gr.sizeof_float, "peaks_f.dat"))
self.fg.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "sample_and_hold_f.dat"))
self.fg.connect(self.nco, gr.file_sink(gr.sizeof_gr_complex, "nco_c.dat"))
self.fg.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "input_c.dat"))
self.fg.connect(self.sigmix, gr.file_sink(gr.sizeof_gr_complex, "output_c.dat"))
gr.hier_block.__init__(self, fg, self.input, self.sampler)
|