summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/hier/sounder/usrp_sink.py
blob: 03a987d41c5afaba07d658d17f0001cdaf8abc92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python
#
# Copyright 2007 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 

from gnuradio import gr, usrp, eng_notation
n2s = eng_notation.num_to_str

# Hierarchical block implementing a USRP sink for complex floats,
# with convenience functions for tuning, interpolation, etc.
#
class usrp_sink_c(gr.hier_block2):
    """
    Create a USRP sink object accepting complex floats.
    """
    def __init__(self, which=0, subdev_spec=None, if_rate=None,
                 freq=0.0, calibration=0.0, verbose=False):
	# Call hierarchical block constructor
	gr.hier_block2.__init__(self, 
                                "usrp_sink_c",                             # Block typename
				gr.io_signature(1,1,gr.sizeof_gr_complex), # Input signature
				gr.io_signature(0,0,0))                    # Output signature

        self._verbose = verbose
        self._u = usrp.sink_c(which)
        if self._verbose:
            print 'DAC sample rate is', n2s(self._u.dac_rate()), "sps"
        self.set_subdev(subdev_spec)
        self.set_if_rate(if_rate)
        self.set_calibration(calibration)
        self.tune(freq)
        self.connect(self, self._u)

    def set_subdev(self, subdev_spec):
        if subdev_spec is None:
            subdev_spec = self.pick_subdevice()
        self._subdev = usrp.selected_subdev(self._u, subdev_spec)
        self._u.set_mux(usrp.determine_tx_mux_value(self._u, subdev_spec))
        if self._verbose:
            print 'TX using', self._subdev.name(), 'daughterboard'

    def pick_subdevice(self):
        """
        The user didn't specify a subdevice.
        If there's a daughterboard on A, select A.
        If there's a daughterboard on B, select B.
        Otherwise, select A.
        """
        if self._u.db[0][0].dbid() >= 0:       # dbid is < 0 if there's no d'board or a problem
            return (0, 0)
        if self._u.db[1][0].dbid() >= 0:
            return (1, 0)
        return (0, 0)

    def set_if_rate(self, if_rate):
        # If no IF rate specified, set to maximum interpolation
        if if_rate is None:
            self._interp = 512
        else:
            self._interp = 4*int(self._u.dac_rate()/(4.0*if_rate)+0.5)
            

        self._if_rate = self._u.dac_rate()/self._interp
        self._u.set_interp_rate(self._interp)

        if self._verbose:
            print "USRP interpolation rate is", self._interp
            print "USRP IF rate is", n2s(self._if_rate), "sps"

    def set_calibration(self, calibration):
        self._cal = calibration
        if self._verbose:
            print "Using frequency calibration offset of", n2s(calibration), "Hz"

    def tune(self, freq):
        """
        Set the center frequency we're interested in.

        @param target_freq: frequency in Hz
        @type: bool

        Tuning is a two step process.  First we ask the front-end to
        tune as close to the desired frequency as it can.  Then we use
        the result of that operation and our target_frequency to
        determine the value for the digital down converter.
        """
        self._tune_result = self._u.tune(self._subdev._which, self._subdev, freq+self._cal)
        if self._tune_result:
            if self._verbose:
                print "Baseband frequency is", n2s(self._tune_result.baseband_freq), "Hz"
                print "DXC frequency is", n2s(self._tune_result.dxc_freq), "Hz"
                print "Center frequency is", n2s(freq), "Hz"
                print "Residual frequency is", n2s(self._tune_result.residual_freq), "Hz"
            return True
        
        return False

if __name__ == '__main__':
    sink = usrp_sink_c(verbose=True)