1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
#
# GMSK modulation and demodulation.
#
#
# Copyright 2005,2006,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
# See gnuradio-examples/python/digital for examples
from gnuradio import gr
from gnuradio import modulation_utils
from math import pi
import numpy
from pprint import pprint
import inspect
# default values (used in __init__ and add_options)
_def_samples_per_symbol = 2
_def_bt = 0.35
_def_verbose = False
_def_log = False
_def_gain_mu = 0.05
_def_mu = 0.5
_def_freq_error = 0.0
_def_omega_relative_limit = 0.005
# /////////////////////////////////////////////////////////////////////////////
# GMSK modulator
# /////////////////////////////////////////////////////////////////////////////
class gmsk2_mod(gr.hier_block2):
def __init__(self,
samples_per_symbol=_def_samples_per_symbol,
bt=_def_bt,
verbose=_def_verbose,
log=_def_log):
"""
Hierarchical block for Gaussian Minimum Shift Key (GMSK)
modulation.
The input is a byte stream (unsigned char) and the
output is the complex modulated signal at baseband.
@param samples_per_symbol: samples per baud >= 2
@type samples_per_symbol: integer
@param bt: Gaussian filter bandwidth * symbol time
@type bt: float
@param verbose: Print information about modulator?
@type verbose: bool
@param debug: Print modualtion data to files?
@type debug: bool
"""
gr.hier_block2.__init__(self,
"gmsk2_mod", # Block typename
gr.io_signature(1,1,gr.sizeof_char), # Input signature
gr.io_signature(1,1,gr.sizeof_gr_complex)) # Output signature
self._samples_per_symbol = samples_per_symbol
self._bt = bt
if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
raise TypeError, ("samples_per_symbol must be an integer >= 2, is %r" % (samples_per_symbol,))
ntaps = 4 * samples_per_symbol # up to 3 bits in filter at once
sensitivity = (pi / 2) / samples_per_symbol # phase change per bit = pi / 2
# Turn it into NRZ data.
self.nrz = gr.bytes_to_syms()
# Form Gaussian filter
# Generate Gaussian response (Needs to be convolved with window below).
self.gaussian_taps = gr.firdes.gaussian(
1, # gain
samples_per_symbol, # symbol_rate
bt, # bandwidth * symbol time
ntaps # number of taps
)
self.sqwave = (1,) * samples_per_symbol # rectangular window
self.taps = numpy.convolve(numpy.array(self.gaussian_taps),numpy.array(self.sqwave))
self.gaussian_filter = gr.interp_fir_filter_fff(samples_per_symbol, self.taps)
# FM modulation
self.fmmod = gr.frequency_modulator_fc(sensitivity)
if verbose:
self._print_verbage()
self.connect(self, self.nrz, self.gaussian_filter, self.fmmod, self)
if log:
self._setup_logging()
def samples_per_symbol(self):
return self._samples_per_symbol
def bits_per_symbol(self=None): # staticmethod that's also callable on an instance
return 1
bits_per_symbol = staticmethod(bits_per_symbol) # make it a static method.
def _print_verbage(self):
print "bits per symbol = %d" % self.bits_per_symbol()
print "Gaussian filter bt = %.2f" % self._bt
def _setup_logging(self):
print "Modulation logging turned on."
self.connect(self.nrz, gr.file_sink(gr.sizeof_float, "nrz.dat"))
self.connect(self.gaussian_filter, gr.file_sink(gr.sizeof_float, "gaussian_filter.dat"))
self.connect(self.fmmod, gr.file_sink(gr.sizeof_gr_complex, "fmmod.dat"))
def add_options(parser):
"""
Adds GMSK modulation-specific options to the standard parser
"""
parser.add_option("", "--bt", type="float", default=_def_bt,
help="set bandwidth-time product [default=%default] (GMSK)")
add_options=staticmethod(add_options)
# FIXME: figure out what has to change for gr.hier_block2 version
#def extract_kwargs_from_options(options):
# """
# Given command line options, create dictionary suitable for passing to __init__
# """
# return modulation_utils.extract_kwargs_from_options(gmsk_mod.__init__,
# ('self', 'fg'), options)
#extract_kwargs_from_options=staticmethod(extract_kwargs_from_options)
# /////////////////////////////////////////////////////////////////////////////
# GMSK demodulator
# /////////////////////////////////////////////////////////////////////////////
class gmsk2_demod(gr.hier_block2):
def __init__(self,
samples_per_symbol=_def_samples_per_symbol,
gain_mu=_def_gain_mu,
mu=_def_mu,
omega_relative_limit=_def_omega_relative_limit,
freq_error=_def_freq_error,
verbose=_def_verbose,
log=_def_log):
"""
Hierarchical block for Gaussian Minimum Shift Key (GMSK)
demodulation.
The input is the complex modulated signal at baseband.
The output is a stream of bits packed 1 bit per byte (the LSB)
@param samples_per_symbol: samples per baud
@type samples_per_symbol: integer
@param verbose: Print information about modulator?
@type verbose: bool
@param log: Print modualtion data to files?
@type log: bool
Clock recovery parameters. These all have reasonble defaults.
@param gain_mu: controls rate of mu adjustment
@type gain_mu: float
@param mu: fractional delay [0.0, 1.0]
@type mu: float
@param omega_relative_limit: sets max variation in omega
@type omega_relative_limit: float, typically 0.000200 (200 ppm)
@param freq_error: bit rate error as a fraction
@param float
"""
gr.hier_block2.__init__(self,
"gmsk2_demod", # Block typename
gr.io_signature(1,1,gr.sizeof_gr_complex), # Input signature
gr.io_signature(1,1,gr.sizeof_char)) # Output signature
self._samples_per_symbol = samples_per_symbol
self._gain_mu = gain_mu
self._mu = mu
self._omega_relative_limit = omega_relative_limit
self._freq_error = freq_error
if samples_per_symbol < 2:
raise TypeError, "samples_per_symbol >= 2, is %f" % samples_per_symbol
self._omega = samples_per_symbol*(1+self._freq_error)
self._gain_omega = .25 * self._gain_mu * self._gain_mu # critically damped
# Demodulate FM
sensitivity = (pi / 2) / samples_per_symbol
self.fmdemod = gr.quadrature_demod_cf(1.0 / sensitivity)
# the clock recovery block tracks the symbol clock and resamples as needed.
# the output of the block is a stream of soft symbols (float)
self.clock_recovery = gr.clock_recovery_mm_ff(self._omega, self._gain_omega,
self._mu, self._gain_mu,
self._omega_relative_limit)
# slice the floats at 0, outputting 1 bit (the LSB of the output byte) per sample
self.slicer = gr.binary_slicer_fb()
if verbose:
self._print_verbage()
self.connect(self, self.fmdemod, self.clock_recovery, self.slicer, self)
if log:
self._setup_logging()
def samples_per_symbol(self):
return self._samples_per_symbol
def bits_per_symbol(self=None): # staticmethod that's also callable on an instance
return 1
bits_per_symbol = staticmethod(bits_per_symbol) # make it a static method.
def _print_verbage(self):
print "bits per symbol = %d" % self.bits_per_symbol()
print "M&M clock recovery omega = %f" % self._omega
print "M&M clock recovery gain mu = %f" % self._gain_mu
print "M&M clock recovery mu = %f" % self._mu
print "M&M clock recovery omega rel. limit = %f" % self._omega_relative_limit
print "frequency error = %f" % self._freq_error
def _setup_logging(self):
print "Demodulation logging turned on."
self.connect(fmdemod, gr.file_sink(gr.sizeof_float, "fmdemod.dat"))
self.connect(clock_recovery, gr.file_sink(gr.sizeof_float, "clock_recovery.dat"))
self.connect(slicer, gr.file_sink(gr.sizeof_char, "slicer.dat"))
def add_options(parser):
"""
Adds GMSK demodulation-specific options to the standard parser
"""
parser.add_option("", "--gain-mu", type="float", default=_def_gain_mu,
help="M&M clock recovery gain mu [default=%default] (GMSK/PSK)")
parser.add_option("", "--mu", type="float", default=_def_mu,
help="M&M clock recovery mu [default=%default] (GMSK/PSK)")
parser.add_option("", "--omega-relative-limit", type="float", default=_def_omega_relative_limit,
help="M&M clock recovery omega relative limit [default=%default] (GMSK/PSK)")
parser.add_option("", "--freq-error", type="float", default=_def_freq_error,
help="M&M clock recovery frequency error [default=%default] (GMSK)")
add_options=staticmethod(add_options)
# FIXME: figure out what this is for gr.hier_block2 version
#def extract_kwargs_from_options(options):
# """
# Given command line options, create dictionary suitable for passing to __init__
# """
# return modulation_utils.extract_kwargs_from_options(gmsk_demod.__init__,
# ('self', 'fg'), options)
#extract_kwargs_from_options=staticmethod(extract_kwargs_from_options)
#
# Add these to the mod/demod registry
#
modulation_utils.add_type_1_mod('gmsk2', gmsk2_mod)
modulation_utils.add_type_1_demod('gmsk2', gmsk2_demod)
|