1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/* -*- c++ -*- */
/*
* Copyright 2002,2004 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <sys/time.h>
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#include <unistd.h>
#include <gr_nco.h>
#include <gr_fxpt_nco.h>
#define ITERATIONS 20000000
#define BLOCK_SIZE (10 * 1000) // fits in cache
#define FREQ 5003.123
static double
timeval_to_double (const struct timeval *tv)
{
return (double) tv->tv_sec + (double) tv->tv_usec * 1e-6;
}
static void
benchmark (void test (float *x, float *y), const char *implementation_name)
{
#ifdef HAVE_SYS_RESOURCE_H
struct rusage rusage_start;
struct rusage rusage_stop;
#else
double clock_start;
double clock_end;
#endif
float output[2*BLOCK_SIZE];
float *x = &output[0], *y = &output[BLOCK_SIZE];
// touch memory
memset(output, 0, 2*BLOCK_SIZE*sizeof(float));
// get starting CPU usage
#ifdef HAVE_SYS_RESOURCE_H
if (getrusage (RUSAGE_SELF, &rusage_start) < 0){
perror ("getrusage");
exit (1);
}
#else
clock_start = (double) clock() * (1000000. / CLOCKS_PER_SEC);
#endif
// do the actual work
test (x, y);
// get ending CPU usage
#ifdef HAVE_SYS_RESOURCE_H
if (getrusage (RUSAGE_SELF, &rusage_stop) < 0){
perror ("getrusage");
exit (1);
}
// compute results
double user =
timeval_to_double (&rusage_stop.ru_utime)
- timeval_to_double (&rusage_start.ru_utime);
double sys =
timeval_to_double (&rusage_stop.ru_stime)
- timeval_to_double (&rusage_start.ru_stime);
double total = user + sys;
#else
clock_end = (double) clock () * (1000000. / CLOCKS_PER_SEC);
double total = clock_end - clock_start;
#endif
printf ("%18s: cpu: %6.3f steps/sec: %10.3e\n",
implementation_name, total, ITERATIONS / total);
}
// ----------------------------------------------------------------
// Don't compare the _vec with other functions since memory store's
// are involved.
void basic_sincos_vec (float *x, float *y)
{
gr_nco<float,float> nco;
nco.set_freq (2 * M_PI / FREQ);
for (int i = 0; i < ITERATIONS/BLOCK_SIZE; i++){
for (int j = 0; j < BLOCK_SIZE; j++){
nco.sincos (&x[2*j+1], &x[2*j]);
nco.step ();
}
}
}
void native_sincos_vec (float *x, float *y)
{
gr_nco<float,float> nco;
nco.set_freq (2 * M_PI / FREQ);
for (int i = 0; i < ITERATIONS/BLOCK_SIZE; i++){
nco.sincos ((gr_complex*)x, BLOCK_SIZE);
}
}
void fxpt_sincos_vec (float *x, float *y)
{
gr_fxpt_nco nco;
nco.set_freq (2 * M_PI / FREQ);
for (int i = 0; i < ITERATIONS/BLOCK_SIZE; i++){
nco.sincos ((gr_complex*)x, BLOCK_SIZE);
}
}
// ----------------------------------------------------------------
void native_sincos (float *x, float *y)
{
gr_nco<float,float> nco;
nco.set_freq (2 * M_PI / FREQ);
for (int i = 0; i < ITERATIONS; i++){
nco.sincos (x, y);
nco.step ();
}
}
void fxpt_sincos (float *x, float *y)
{
gr_fxpt_nco nco;
nco.set_freq (2 * M_PI / FREQ);
for (int i = 0; i < ITERATIONS; i++){
nco.sincos (x, y);
nco.step ();
}
}
// ----------------------------------------------------------------
void native_sin (float *x, float *y)
{
gr_nco<float,float> nco;
nco.set_freq (2 * M_PI / FREQ);
for (int i = 0; i < ITERATIONS; i++){
*x = nco.sin ();
nco.step ();
}
}
void fxpt_sin (float *x, float *y)
{
gr_fxpt_nco nco;
nco.set_freq (2 * M_PI / FREQ);
for (int i = 0; i < ITERATIONS; i++){
*x = nco.sin ();
nco.step ();
}
}
// ----------------------------------------------------------------
void nop_fct (float *x, float *y)
{
}
void nop_loop (float *x, float *y)
{
for (int i = 0; i < ITERATIONS; i++){
nop_fct (x, y);
}
}
int
main (int argc, char **argv)
{
benchmark (nop_loop, "nop loop");
benchmark (native_sin, "native sine");
benchmark (fxpt_sin, "fxpt sine");
benchmark (native_sincos, "native sin/cos");
benchmark (fxpt_sincos, "fxpt sin/cos");
benchmark (basic_sincos_vec, "basic sin/cos vec");
benchmark (native_sincos_vec, "native sin/cos vec");
benchmark (fxpt_sincos_vec, "fxpt sin/cos vec");
}
|