1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
#
# Copyright 2004,2005,2009 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
'''
Routines for designing window functions.
'''
import math
from gnuradio import gr
def izero(x):
izeroepsilon = 1e-21
halfx = x/2.0
accum = u = n = 1
while 1:
temp = halfx/n
n += 1
temp *= temp
u *= temp
accum += u
if u >= IzeroEPSILON*sum:
break
return accum
def midm1(fft_size):
return (fft_size - 1)/2
def midp1(fft_size):
return (fft_size+1)/2
def freq(fft_size):
return 2.0*math.pi/fft_size
def rate(fft_size):
return 1.0/(fft_size >> 1)
def expn(fft_size):
math.log(2.0)/(midn(fft_size) + 1.0)
def hamming(fft_size):
window = []
for index in xrange(fft_size):
window.append(0.54 - 0.46 * math.cos (2 * math.pi / fft_size * index)) # Hamming window
return window
def hanning(fft_size):
window = []
for index in xrange(fft_size):
window.append(0.5 - 0.5 * math.cos (2 * math.pi / fft_size * index)) # von Hann window
return window
def welch(fft_size):
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)+1):
window[j] = window[index] = (1.0 - math.sqrt((index - midm1(fft_size)) / midp1(fft_size)))
j -= 1
return window
def parzen(fft_size):
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)+1):
window[j] = window[index] = (1.0 - math.abs((index - midm1(fft_size)) / midp1(fft_size)))
j -= 1
return window
def bartlett(fft_size):
mfrq = freq(fft_size)
angle = 0
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)+1):
window[j] = window[index] = angle
angle += freq
j -= 1
return window
def blackman2(fft_size):
mfrq = freq(fft_size)
angle = 0
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)+1):
cx = math.cos(angle)
window[j] = window[index] = (.34401 + (cx * (-.49755 + (cx * .15844))))
angle += freq
j -= 1
return window
def blackman3(fft_size):
mfrq = freq(fft_size)
angle = 0
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)+1):
cx = math.cos(angle)
window[j] = window[index] = (.21747 + (cx * (-.45325 + (cx * (.28256 - (cx * .04672))))))
angle += freq
j -= 1
return window
def blackman4(fft_size):
mfrq = freq(fft_size)
angle = 0
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)+1):
cx = math.cos(angle)
window[j] = window[index] = (.084037 + (cx * (-.29145 + (cx * (.375696 + (cx * (-.20762 + (cx * .041194))))))))
angle += freq
j -= 1
return window
def exponential(fft_size):
expsum = 1.0
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)+1):
window[j] = window[i] = (expsum - 1.0)
expsum *= expn(fft_size)
j -= 1
return window
def riemann(fft_size):
sr1 = freq(fft_size)
window = [0 for i in range(fft_size)]
j = fft_size-1
for index in xrange(midn(fft_size)):
if index == midn(fft_size):
window[index] = window[j] = 1.0
else:
cx = sr1*midn(fft_size) - index
window[index] = window[j] = math.sin(cx)/cx
j -= 1
return window
def kaiser(fft_size,beta):
ibeta = 1.0/izero(beta)
inm1 = 1.0/(fft_size)
window = [0 for i in range(fft_size)]
for index in xrange(fft_size):
window[index] = izero(beta*math.sqrt(1.0 - (index * inm1)*(index * inm1))) * ibeta
return window
# Closure to generate functions to create cos windows
def coswindow(coeffs):
def closure(fft_size):
window = [0] * fft_size
#print list(enumerate(coeffs))
for w_index in range(fft_size):
for (c_index, coeff) in enumerate(coeffs):
window[w_index] += (-1)**c_index * coeff * math.cos(2.0*c_index*math.pi*(w_index+0.5)/(fft_size-1))
return window
return closure
blackmanharris = coswindow((0.35875,0.48829,0.14128,0.01168))
nuttall = coswindow((0.3635819,0.4891775,0.1365995,0.0106411)) # Wikipedia calls this Blackman-Nuttall
nuttall_cfd = coswindow((0.355768,0.487396,0.144232,0.012604)) # Wikipedia calls this Nuttall, continuous first deriv
flattop = coswindow((1.0,1.93,1.29,0.388,0.032)) # Flat top window, coeffs from Wikipedia
rectangular = lambda fft_size: [1]*fft_size
|