1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
/*
* Copyright 1995 Phil Karn, KA9Q
* Copyright 2008 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* Viterbi decoder for K=7 rate=1/2 convolutional code
* Some modifications from original Karn code by Matt Ettus
*/
#include "viterbi.h"
/* The two generator polynomials for the NASA Standard K=7 code.
* Since these polynomials are known to be optimal for this constraint
* length there is not much point in changing them. But if you do, you
* will have to regenerate the BUTTERFLY macro calls in viterbi()
*/
#define POLYA 0x6d
#define POLYB 0x4f
/* The basic Viterbi decoder operation, called a "butterfly"
* operation because of the way it looks on a trellis diagram. Each
* butterfly involves an Add-Compare-Select (ACS) operation on the two nodes
* where the 0 and 1 paths from the current node merge at the next step of
* the trellis.
*
* The code polynomials are assumed to have 1's on both ends. Given a
* function encode_state() that returns the two symbols for a given
* encoder state in the low two bits, such a code will have the following
* identities for even 'n' < 64:
*
* encode_state(n) = encode_state(n+65)
* encode_state(n+1) = encode_state(n+64) = (3 ^ encode_state(n))
*
* Any convolutional code you would actually want to use will have
* these properties, so these assumptions aren't too limiting.
*
* Doing this as a macro lets the compiler evaluate at compile time the
* many expressions that depend on the loop index and encoder state and
* emit them as immediate arguments.
* This makes an enormous difference on register-starved machines such
* as the Intel x86 family where evaluating these expressions at runtime
* would spill over into memory.
*/
#define BUTTERFLY(i,sym) { \
int m0,m1;\
\
/* ACS for 0 branch */\
m0 = state[i].metric + mets[sym]; /* 2*i */\
m1 = state[i+32].metric + mets[3^sym]; /* 2*i + 64 */\
if(m0 > m1){\
next[2*i].metric = m0;\
next[2*i].path = state[i].path << 1;\
} else {\
next[2*i].metric = m1;\
next[2*i].path = (state[i+32].path << 1)|1;\
}\
/* ACS for 1 branch */\
m0 = state[i].metric + mets[3^sym]; /* 2*i + 1 */\
m1 = state[i+32].metric + mets[sym]; /* 2*i + 65 */\
if(m0 > m1){\
next[2*i+1].metric = m0;\
next[2*i+1].path = state[i].path << 1;\
} else {\
next[2*i+1].metric = m1;\
next[2*i+1].path = (state[i+32].path << 1)|1;\
}\
}
extern unsigned char Partab[]; /* Parity lookup table */
/* Convolutionally encode data into binary symbols */
unsigned char
encode(unsigned char *symbols,
unsigned char *data,
unsigned int nbytes,
unsigned char encstate)
{
int i;
while(nbytes-- != 0){
for(i=7;i>=0;i--){
encstate = (encstate << 1) | ((*data >> i) & 1);
*symbols++ = Partab[encstate & POLYA];
*symbols++ = Partab[encstate & POLYB];
}
data++;
}
return encstate;
}
/* Viterbi decoder */
int
viterbi(unsigned long *metric, /* Final path metric (returned value) */
unsigned char *data, /* Decoded output data */
unsigned char *symbols, /* Raw deinterleaved input symbols */
unsigned int nbits, /* Number of output bits */
int mettab[2][256] /* Metric table, [sent sym][rx symbol] */
){
unsigned int bitcnt = 0;
int mets[4];
long bestmetric;
int beststate,i;
struct viterbi_state state0[64],state1[64],*state,*next;
state = state0;
next = state1;
/* Initialize starting metrics to prefer 0 state */
state[0].metric = 0;
for(i=1;i<64;i++)
state[i].metric = -999999;
state[0].path = 0;
for(bitcnt = 0;bitcnt < nbits;bitcnt++){
/* Read input symbol pair and compute all possible branch
* metrics
*/
mets[0] = mettab[0][symbols[0]] + mettab[0][symbols[1]];
mets[1] = mettab[0][symbols[0]] + mettab[1][symbols[1]];
mets[2] = mettab[1][symbols[0]] + mettab[0][symbols[1]];
mets[3] = mettab[1][symbols[0]] + mettab[1][symbols[1]];
symbols += 2;
/* These macro calls were generated by genbut.c */
BUTTERFLY(0,0);
BUTTERFLY(1,1);
BUTTERFLY(2,3);
BUTTERFLY(3,2);
BUTTERFLY(4,3);
BUTTERFLY(5,2);
BUTTERFLY(6,0);
BUTTERFLY(7,1);
BUTTERFLY(8,0);
BUTTERFLY(9,1);
BUTTERFLY(10,3);
BUTTERFLY(11,2);
BUTTERFLY(12,3);
BUTTERFLY(13,2);
BUTTERFLY(14,0);
BUTTERFLY(15,1);
BUTTERFLY(16,2);
BUTTERFLY(17,3);
BUTTERFLY(18,1);
BUTTERFLY(19,0);
BUTTERFLY(20,1);
BUTTERFLY(21,0);
BUTTERFLY(22,2);
BUTTERFLY(23,3);
BUTTERFLY(24,2);
BUTTERFLY(25,3);
BUTTERFLY(26,1);
BUTTERFLY(27,0);
BUTTERFLY(28,1);
BUTTERFLY(29,0);
BUTTERFLY(30,2);
BUTTERFLY(31,3);
/* Swap current and next states */
if(bitcnt & 1){
state = state0;
next = state1;
} else {
state = state1;
next = state0;
}
// ETTUS
//if(bitcnt > nbits-7){
/* In tail, poison non-zero nodes */
//for(i=1;i<64;i += 2)
// state[i].metric = -9999999;
//}
/* Produce output every 8 bits once path memory is full */
if((bitcnt % 8) == 5 && bitcnt > 32){
/* Find current best path */
bestmetric = state[0].metric;
beststate = 0;
for(i=1;i<64;i++){
if(state[i].metric > bestmetric){
bestmetric = state[i].metric;
beststate = i;
}
}
#ifdef notdef
printf("metrics[%d] = %d state = %lx\n",beststate,
state[beststate].metric,state[beststate].path);
#endif
*data++ = state[beststate].path >> 24;
}
}
/* Output remaining bits from 0 state */
// ETTUS Find best state instead
bestmetric = state[0].metric;
beststate = 0;
for(i=1;i<64;i++){
if(state[i].metric > bestmetric){
bestmetric = state[i].metric;
beststate = i;
}
}
if((i = bitcnt % 8) != 6)
state[beststate].path <<= 6-i;
*data++ = state[beststate].path >> 24;
*data++ = state[beststate].path >> 16;
*data++ = state[beststate].path >> 8;
*data = state[beststate].path;
//printf ("BS = %d\tBSM = %d\tM0 = %d\n",beststate,state[beststate].metric,state[0].metric);
*metric = state[beststate].metric;
return 0;
}
void
viterbi_chunks_init(struct viterbi_state* state) {
// Initialize starting metrics to prefer 0 state
int i;
state[0].metric = 0;
state[0].path = 0;
for(i=1;i<64;i++)
state[i].metric = -999999;
}
void
viterbi_butterfly8(unsigned char *symbols, int mettab[2][256], struct viterbi_state *state0, struct viterbi_state *state1)
{
unsigned int bitcnt;
int mets[4];
struct viterbi_state *state, *next;
state = state0;
next = state1;
// Operate on 16 symbols (8 bits) at a time
for(bitcnt = 0;bitcnt < 8;bitcnt++){
// Read input symbol pair and compute all possible branch metrics
mets[0] = mettab[0][symbols[0]] + mettab[0][symbols[1]];
mets[1] = mettab[0][symbols[0]] + mettab[1][symbols[1]];
mets[2] = mettab[1][symbols[0]] + mettab[0][symbols[1]];
mets[3] = mettab[1][symbols[0]] + mettab[1][symbols[1]];
symbols += 2;
// These macro calls were generated by genbut.c
BUTTERFLY(0,0);BUTTERFLY(1,1);BUTTERFLY(2,3);BUTTERFLY(3,2);
BUTTERFLY(4,3);BUTTERFLY(5,2);BUTTERFLY(6,0);BUTTERFLY(7,1);
BUTTERFLY(8,0);BUTTERFLY(9,1);BUTTERFLY(10,3);BUTTERFLY(11,2);
BUTTERFLY(12,3);BUTTERFLY(13,2);BUTTERFLY(14,0);BUTTERFLY(15,1);
BUTTERFLY(16,2);BUTTERFLY(17,3);BUTTERFLY(18,1);BUTTERFLY(19,0);
BUTTERFLY(20,1);BUTTERFLY(21,0);BUTTERFLY(22,2);BUTTERFLY(23,3);
BUTTERFLY(24,2);BUTTERFLY(25,3);BUTTERFLY(26,1);BUTTERFLY(27,0);
BUTTERFLY(28,1);BUTTERFLY(29,0);BUTTERFLY(30,2);BUTTERFLY(31,3);
// Swap current and next states
if(bitcnt & 1){
state = state0;
next = state1;
} else {
state = state1;
next = state0;
}
}
}
void
viterbi_butterfly2(unsigned char *symbols, int mettab[2][256], struct viterbi_state *state0, struct viterbi_state *state1)
{
//unsigned int bitcnt;
int mets[4];
struct viterbi_state *state, *next;
state = state0;
next = state1;
// Operate on 4 symbols (2 bits) at a time
// Read input symbol pair and compute all possible branch metrics
mets[0] = mettab[0][symbols[0]] + mettab[0][symbols[1]];
mets[1] = mettab[0][symbols[0]] + mettab[1][symbols[1]];
mets[2] = mettab[1][symbols[0]] + mettab[0][symbols[1]];
mets[3] = mettab[1][symbols[0]] + mettab[1][symbols[1]];
// These macro calls were generated by genbut.c
BUTTERFLY(0,0);BUTTERFLY(1,1);BUTTERFLY(2,3);BUTTERFLY(3,2);
BUTTERFLY(4,3);BUTTERFLY(5,2);BUTTERFLY(6,0);BUTTERFLY(7,1);
BUTTERFLY(8,0);BUTTERFLY(9,1);BUTTERFLY(10,3);BUTTERFLY(11,2);
BUTTERFLY(12,3);BUTTERFLY(13,2);BUTTERFLY(14,0);BUTTERFLY(15,1);
BUTTERFLY(16,2);BUTTERFLY(17,3);BUTTERFLY(18,1);BUTTERFLY(19,0);
BUTTERFLY(20,1);BUTTERFLY(21,0);BUTTERFLY(22,2);BUTTERFLY(23,3);
BUTTERFLY(24,2);BUTTERFLY(25,3);BUTTERFLY(26,1);BUTTERFLY(27,0);
BUTTERFLY(28,1);BUTTERFLY(29,0);BUTTERFLY(30,2);BUTTERFLY(31,3);
state = state1;
next = state0;
// Read input symbol pair and compute all possible branch metrics
mets[0] = mettab[0][symbols[2]] + mettab[0][symbols[3]];
mets[1] = mettab[0][symbols[2]] + mettab[1][symbols[3]];
mets[2] = mettab[1][symbols[2]] + mettab[0][symbols[3]];
mets[3] = mettab[1][symbols[2]] + mettab[1][symbols[3]];
// These macro calls were generated by genbut.c
BUTTERFLY(0,0);BUTTERFLY(1,1);BUTTERFLY(2,3);BUTTERFLY(3,2);
BUTTERFLY(4,3);BUTTERFLY(5,2);BUTTERFLY(6,0);BUTTERFLY(7,1);
BUTTERFLY(8,0);BUTTERFLY(9,1);BUTTERFLY(10,3);BUTTERFLY(11,2);
BUTTERFLY(12,3);BUTTERFLY(13,2);BUTTERFLY(14,0);BUTTERFLY(15,1);
BUTTERFLY(16,2);BUTTERFLY(17,3);BUTTERFLY(18,1);BUTTERFLY(19,0);
BUTTERFLY(20,1);BUTTERFLY(21,0);BUTTERFLY(22,2);BUTTERFLY(23,3);
BUTTERFLY(24,2);BUTTERFLY(25,3);BUTTERFLY(26,1);BUTTERFLY(27,0);
BUTTERFLY(28,1);BUTTERFLY(29,0);BUTTERFLY(30,2);BUTTERFLY(31,3);
}
unsigned char
viterbi_get_output(struct viterbi_state *state, unsigned char *outbuf) {
// Produce output every 8 bits once path memory is full
// if((bitcnt % 8) == 5 && bitcnt > 32) {
// Find current best path
unsigned int i,beststate;
int bestmetric;
bestmetric = state[0].metric;
beststate = 0;
for(i=1;i<64;i++)
if(state[i].metric > bestmetric) {
bestmetric = state[i].metric;
beststate = i;
}
*outbuf = state[beststate].path >> 24;
return bestmetric;
}
//printf ("BS = %d\tBSM = %d\tM0 = %d\n",beststate,state[beststate].metric,state[0].metric);
// In tail, poison non-zero nodes
//if(bits_out > packet_size-7)
// for(i=1;i<64;i += 2)
// state[i].metric = -9999999;
|