1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/* -*- c++ -*- */
/*
* Copyright 2004,2007 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDED_GR_BLOCK_H
#define INCLUDED_GR_BLOCK_H
#include <gr_basic_block.h>
/*!
* \brief The abstract base class for all 'terminal' processing blocks.
* \ingroup base
*
* A signal processing flow is constructed by creating a tree of
* hierarchical blocks, which at any level may also contain terminal nodes
* that actually implement signal processing functions. This is the base
* class for all such leaf nodes.
* Blocks have a set of input streams and output streams. The
* input_signature and output_signature define the number of input
* streams and output streams respectively, and the type of the data
* items in each stream.
*
* Although blocks may consume data on each input stream at a
* different rate, all outputs streams must produce data at the same
* rate. That rate may be different from any of the input rates.
*
* User derived blocks override two methods, forecast and general_work,
* to implement their signal processing behavior. forecast is called
* by the system scheduler to determine how many items are required on
* each input stream in order to produce a given number of output
* items.
*
* general_work is called to perform the signal processing in the block.
* It reads the input items and writes the output items.
*/
class gr_block : public gr_basic_block {
public:
virtual ~gr_block ();
/*!
* Assume block computes y_i = f(x_i, x_i-1, x_i-2, x_i-3...)
* History is the number of x_i's that are examined to produce one y_i.
* This comes in handy for FIR filters, where we use history to
* ensure that our input contains the appropriate "history" for the
* filter. History should be equal to the number of filter taps.
*/
unsigned history () const { return d_history; }
void set_history (unsigned history) { d_history = history; }
/*!
* \brief return true if this block has a fixed input to output rate
*
* If true, then fixed_rate_in_to_out and fixed_rate_out_to_in may be called.
*/
bool fixed_rate() const { return d_fixed_rate; }
// ----------------------------------------------------------------
// override these to define your behavior
// ----------------------------------------------------------------
/*!
* \brief Estimate input requirements given output request
*
* \param noutput_items number of output items to produce
* \param ninput_items_required number of input items required on each input stream
*
* Given a request to product \p noutput_items, estimate the number of
* data items required on each input stream. The estimate doesn't have
* to be exact, but should be close.
*/
virtual void forecast (int noutput_items,
gr_vector_int &ninput_items_required);
/*!
* \brief compute output items from input items
*
* \param noutput_items number of output items to write on each output stream
* \param ninput_items number of input items available on each input stream
* \param input_items vector of pointers to the input items, one entry per input stream
* \param output_items vector of pointers to the output items, one entry per output stream
*
* \returns number of items actually written to each output stream, or -1 on EOF.
* It is OK to return a value less than noutput_items. -1 <= return value <= noutput_items
*
* general_work must call consume or consume_each to indicate how many items
* were consumed on each input stream.
*/
virtual int general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items) = 0;
/*!
* \brief Called to enable drivers, etc for i/o devices.
*
* This allows a block to enable an associated driver to begin
* transfering data just before we start to execute the scheduler.
* The end result is that this reduces latency in the pipeline when
* dealing with audio devices, usrps, etc.
*/
virtual bool start();
/*!
* \brief Called to disable drivers, etc for i/o devices.
*/
virtual bool stop();
// ----------------------------------------------------------------
/*!
* \brief Constrain the noutput_items argument passed to forecast and general_work
*
* set_output_multiple causes the scheduler to ensure that the noutput_items
* argument passed to forecast and general_work will be an integer multiple
* of \param multiple The default value of output multiple is 1.
*/
void set_output_multiple (int multiple);
int output_multiple () const { return d_output_multiple; }
/*!
* \brief Tell the scheduler \p how_many_items of input stream \p which_input were consumed.
*/
void consume (int which_input, int how_many_items);
/*!
* \brief Tell the scheduler \p how_many_items were consumed on each input stream.
*/
void consume_each (int how_many_items);
/*!
* \brief Set the approximate output rate / input rate
*
* Provide a hint to the buffer allocator and scheduler.
* The default relative_rate is 1.0
*
* decimators have relative_rates < 1.0
* interpolators have relative_rates > 1.0
*/
void set_relative_rate (double relative_rate);
/*!
* \brief return the approximate output rate / input rate
*/
double relative_rate () const { return d_relative_rate; }
/*
* The following two methods provide special case info to the
* scheduler in the event that a block has a fixed input to output
* ratio. gr_sync_block, gr_sync_decimator and gr_sync_interpolator
* override these. If you're fixed rate, subclass one of those.
*/
/*!
* \brief Given ninput samples, return number of output samples that will be produced.
* N.B. this is only defined if fixed_rate returns true.
* Generally speaking, you don't need to override this.
*/
virtual int fixed_rate_ninput_to_noutput(int ninput);
/*!
* \brief Given noutput samples, return number of input samples required to produce noutput.
* N.B. this is only defined if fixed_rate returns true.
* Generally speaking, you don't need to override this.
*/
virtual int fixed_rate_noutput_to_ninput(int noutput);
// ----------------------------------------------------------------------------
private:
int d_output_multiple;
double d_relative_rate; // approx output_rate / input_rate
gr_block_detail_sptr d_detail; // implementation details
unsigned d_history;
bool d_fixed_rate;
protected:
gr_block (const std::string &name,
gr_io_signature_sptr input_signature,
gr_io_signature_sptr output_signature);
void set_fixed_rate(bool fixed_rate){ d_fixed_rate = fixed_rate; }
// These are really only for internal use, but leaving them public avoids
// having to work up an ever-varying list of friends
public:
gr_block_detail_sptr detail () const { return d_detail; }
void set_detail (gr_block_detail_sptr detail) { d_detail = detail; }
};
typedef std::vector<gr_block_sptr> gr_block_vector_t;
typedef std::vector<gr_block_sptr>::iterator gr_block_viter_t;
inline gr_block_sptr make_gr_block_sptr(gr_basic_block_sptr p)
{
return boost::dynamic_pointer_cast<gr_block, gr_basic_block>(p);
}
#endif /* INCLUDED_GR_BLOCK_H */
|