1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
/* -*- c++ -*- */
/*
* Copyright 2003,2008,2011 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <gri_fft.h>
#include <fftw3.h>
#include <gr_complex.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <cassert>
#include <stdexcept>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
namespace fs = boost::filesystem;
static std::string get_home_dir(void){
#if defined(BOOST_WINDOWS)
return getenv ("APPDATA");
#else
return getenv ("HOME");
#endif
}
boost::mutex &
gri_fft_planner::mutex()
{
static boost::mutex s_planning_mutex;
return s_planning_mutex;
}
static const char *
wisdom_filename ()
{
static fs::path path;
path = fs::path(get_home_dir()) / ".gr_fftw_wisdom";
return path.string().c_str();
}
static void
gri_fftw_import_wisdom ()
{
const char *filename = wisdom_filename ();
FILE *fp = fopen (filename, "r");
if (fp != 0){
int r = fftwf_import_wisdom_from_file (fp);
fclose (fp);
if (!r){
fprintf (stderr, "gri_fftw: can't import wisdom from %s\n", filename);
}
}
}
static void
gri_fftw_export_wisdom ()
{
const char *filename = wisdom_filename ();
FILE *fp = fopen (filename, "w");
if (fp != 0){
fftwf_export_wisdom_to_file (fp);
fclose (fp);
}
else {
fprintf (stderr, "gri_fftw: ");
perror (filename);
}
}
// ----------------------------------------------------------------
gri_fft_complex::gri_fft_complex (int fft_size, bool forward)
{
// Hold global mutex during plan construction and destruction.
gri_fft_planner::scoped_lock lock(gri_fft_planner::mutex());
assert (sizeof (fftwf_complex) == sizeof (gr_complex));
if (fft_size <= 0)
throw std::out_of_range ("gri_fftw: invalid fft_size");
d_fft_size = fft_size;
d_inbuf = (gr_complex *) fftwf_malloc (sizeof (gr_complex) * inbuf_length ());
if (d_inbuf == 0)
throw std::runtime_error ("fftwf_malloc");
d_outbuf = (gr_complex *) fftwf_malloc (sizeof (gr_complex) * outbuf_length ());
if (d_outbuf == 0){
fftwf_free (d_inbuf);
throw std::runtime_error ("fftwf_malloc");
}
gri_fftw_import_wisdom (); // load prior wisdom from disk
d_plan = fftwf_plan_dft_1d (fft_size,
reinterpret_cast<fftwf_complex *>(d_inbuf),
reinterpret_cast<fftwf_complex *>(d_outbuf),
forward ? FFTW_FORWARD : FFTW_BACKWARD,
FFTW_MEASURE);
if (d_plan == NULL) {
fprintf(stderr, "gri_fft_complex: error creating plan\n");
throw std::runtime_error ("fftwf_plan_dft_1d failed");
}
gri_fftw_export_wisdom (); // store new wisdom to disk
}
gri_fft_complex::~gri_fft_complex ()
{
// Hold global mutex during plan construction and destruction.
gri_fft_planner::scoped_lock lock(gri_fft_planner::mutex());
fftwf_destroy_plan ((fftwf_plan) d_plan);
fftwf_free (d_inbuf);
fftwf_free (d_outbuf);
}
void
gri_fft_complex::execute ()
{
fftwf_execute ((fftwf_plan) d_plan);
}
// ----------------------------------------------------------------
gri_fft_real_fwd::gri_fft_real_fwd (int fft_size)
{
// Hold global mutex during plan construction and destruction.
gri_fft_planner::scoped_lock lock(gri_fft_planner::mutex());
assert (sizeof (fftwf_complex) == sizeof (gr_complex));
if (fft_size <= 0)
throw std::out_of_range ("gri_fftw: invalid fft_size");
d_fft_size = fft_size;
d_inbuf = (float *) fftwf_malloc (sizeof (float) * inbuf_length ());
if (d_inbuf == 0)
throw std::runtime_error ("fftwf_malloc");
d_outbuf = (gr_complex *) fftwf_malloc (sizeof (gr_complex) * outbuf_length ());
if (d_outbuf == 0){
fftwf_free (d_inbuf);
throw std::runtime_error ("fftwf_malloc");
}
gri_fftw_import_wisdom (); // load prior wisdom from disk
d_plan = fftwf_plan_dft_r2c_1d (fft_size,
d_inbuf,
reinterpret_cast<fftwf_complex *>(d_outbuf),
FFTW_MEASURE);
if (d_plan == NULL) {
fprintf(stderr, "gri_fft_real_fwd: error creating plan\n");
throw std::runtime_error ("fftwf_plan_dft_r2c_1d failed");
}
gri_fftw_export_wisdom (); // store new wisdom to disk
}
gri_fft_real_fwd::~gri_fft_real_fwd ()
{
// Hold global mutex during plan construction and destruction.
gri_fft_planner::scoped_lock lock(gri_fft_planner::mutex());
fftwf_destroy_plan ((fftwf_plan) d_plan);
fftwf_free (d_inbuf);
fftwf_free (d_outbuf);
}
void
gri_fft_real_fwd::execute ()
{
fftwf_execute ((fftwf_plan) d_plan);
}
// ----------------------------------------------------------------
gri_fft_real_rev::gri_fft_real_rev (int fft_size)
{
// Hold global mutex during plan construction and destruction.
gri_fft_planner::scoped_lock lock(gri_fft_planner::mutex());
assert (sizeof (fftwf_complex) == sizeof (gr_complex));
if (fft_size <= 0)
throw std::out_of_range ("gri_fftw: invalid fft_size");
d_fft_size = fft_size;
d_inbuf = (gr_complex *) fftwf_malloc (sizeof (gr_complex) * inbuf_length ());
if (d_inbuf == 0)
throw std::runtime_error ("fftwf_malloc");
d_outbuf = (float *) fftwf_malloc (sizeof (float) * outbuf_length ());
if (d_outbuf == 0){
fftwf_free (d_inbuf);
throw std::runtime_error ("fftwf_malloc");
}
// FIXME If there's ever a chance that the planning functions
// will be called in multiple threads, we've got to ensure single
// threaded access. They are not thread-safe.
gri_fftw_import_wisdom (); // load prior wisdom from disk
d_plan = fftwf_plan_dft_c2r_1d (fft_size,
reinterpret_cast<fftwf_complex *>(d_inbuf),
d_outbuf,
FFTW_MEASURE);
if (d_plan == NULL) {
fprintf(stderr, "gri_fft_real_rev: error creating plan\n");
throw std::runtime_error ("fftwf_plan_dft_c2r_1d failed");
}
gri_fftw_export_wisdom (); // store new wisdom to disk
}
gri_fft_real_rev::~gri_fft_real_rev ()
{
fftwf_destroy_plan ((fftwf_plan) d_plan);
fftwf_free (d_inbuf);
fftwf_free (d_outbuf);
}
void
gri_fft_real_rev::execute ()
{
fftwf_execute ((fftwf_plan) d_plan);
}
|