summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/lib/general/gr_firdes.cc
blob: 4c72371410d730daa9680f542c269963524b3345 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/* -*- c++ -*- */
/*
 * Copyright 2002,2007,2008 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <gr_firdes.h>
#include <stdexcept>


using std::vector;

#define IzeroEPSILON 1E-21               /* Max error acceptable in Izero */

static double Izero(double x)
{
   double sum, u, halfx, temp;
   int n;

   sum = u = n = 1;
   halfx = x/2.0;
   do {
      temp = halfx/(double)n;
      n += 1;
      temp *= temp;
      u *= temp;
      sum += u;
      } while (u >= IzeroEPSILON*sum);
   return(sum);
}


//
//	=== Low Pass ===
//

vector<float>
gr_firdes::low_pass_2(double gain,
		      double sampling_freq,    // Hz
		      double cutoff_freq,      // Hz BEGINNING of transition band
		      double transition_width, // Hz width of transition band
		      double attenuation_dB,   // attenuation dB
		      win_type window_type,
		      double beta)             // used only with Kaiser
{
  sanity_check_1f (sampling_freq, cutoff_freq, transition_width);

  int ntaps = compute_ntaps_windes (sampling_freq, transition_width,
				    attenuation_dB);

  // construct the truncated ideal impulse response
  // [sin(x)/x for the low pass case]

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * cutoff_freq / sampling_freq;
  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = fwT0 / M_PI * w[n + M];
    else {
      // a little algebra gets this into the more familiar sin(x)/x form
      taps[n + M] =  sin (n * fwT0) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For low-pass, gain @ zero freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M];

  gain /= fmax;	// normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;


  return taps;
}

vector<float>
gr_firdes::low_pass (double gain,
		     double sampling_freq,
		     double cutoff_freq,	// Hz center of transition band
		     double transition_width,	// Hz width of transition band
		     win_type window_type,
		     double beta)		// used only with Kaiser
{
  sanity_check_1f (sampling_freq, cutoff_freq, transition_width);

  int ntaps = compute_ntaps (sampling_freq, transition_width,
			     window_type, beta);

  // construct the truncated ideal impulse response
  // [sin(x)/x for the low pass case]

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * cutoff_freq / sampling_freq;

  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = fwT0 / M_PI * w[n + M];
    else {
      // a little algebra gets this into the more familiar sin(x)/x form
      taps[n + M] =  sin (n * fwT0) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For low-pass, gain @ zero freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M];

  gain /= fmax;	// normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;

  return taps;
}


//
//	=== High Pass ===
//

vector<float>
gr_firdes::high_pass_2 (double gain,
                      double sampling_freq,
                      double cutoff_freq,       // Hz center of transition band
                      double transition_width,  // Hz width of transition band
		      double attenuation_dB,   // attenuation dB
                      win_type window_type,
                      double beta)              // used only with Kaiser
{
  sanity_check_1f (sampling_freq, cutoff_freq, transition_width);

  int ntaps = compute_ntaps_windes (sampling_freq, transition_width,
				    attenuation_dB);

  // construct the truncated ideal impulse response times the window function

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * cutoff_freq / sampling_freq;

  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = (1 - (fwT0 / M_PI)) * w[n + M];
    else {
      // a little algebra gets this into the more familiar sin(x)/x form
      taps[n + M] =  -sin (n * fwT0) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For high-pass, gain @ fs/2 freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M] * cos (n * M_PI);

  gain /= fmax; // normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;


  return taps;
}


vector<float>
gr_firdes::high_pass (double gain,
                      double sampling_freq,
                      double cutoff_freq,       // Hz center of transition band
                      double transition_width,  // Hz width of transition band
                      win_type window_type,
                      double beta)              // used only with Kaiser
{
  sanity_check_1f (sampling_freq, cutoff_freq, transition_width);

  int ntaps = compute_ntaps (sampling_freq, transition_width,
                             window_type, beta);

  // construct the truncated ideal impulse response times the window function

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * cutoff_freq / sampling_freq;

  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = (1 - (fwT0 / M_PI)) * w[n + M];
    else {
      // a little algebra gets this into the more familiar sin(x)/x form
      taps[n + M] =  -sin (n * fwT0) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For high-pass, gain @ fs/2 freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M] * cos (n * M_PI);

  gain /= fmax; // normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;

  return taps;
}

//
//      === Band Pass ===
//

vector<float>
gr_firdes::band_pass_2 (double gain,
		      double sampling_freq,
		      double low_cutoff_freq,	// Hz center of transition band
		      double high_cutoff_freq,	// Hz center of transition band
		      double transition_width,	// Hz width of transition band
		      double attenuation_dB,   // attenuation dB
		      win_type window_type,
		      double beta)		// used only with Kaiser
{
  sanity_check_2f (sampling_freq,
		   low_cutoff_freq,
		   high_cutoff_freq, transition_width);

  int ntaps = compute_ntaps_windes (sampling_freq, transition_width,
				    attenuation_dB);

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * low_cutoff_freq / sampling_freq;
  double fwT1 = 2 * M_PI * high_cutoff_freq / sampling_freq;

  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = (fwT1 - fwT0) / M_PI * w[n + M];
    else {
      taps[n + M] =  (sin (n * fwT1) - sin (n * fwT0)) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For band-pass, gain @ center freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M] * cos (n * (fwT0 + fwT1) * 0.5);

  gain /= fmax;	// normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;

  return taps;
}


vector<float>
gr_firdes::band_pass (double gain,
		      double sampling_freq,
		      double low_cutoff_freq,	// Hz center of transition band
		      double high_cutoff_freq,	// Hz center of transition band
		      double transition_width,	// Hz width of transition band
		      win_type window_type,
		      double beta)		// used only with Kaiser
{
  sanity_check_2f (sampling_freq,
		   low_cutoff_freq,
		   high_cutoff_freq, transition_width);

  int ntaps = compute_ntaps (sampling_freq, transition_width,
			     window_type, beta);

  // construct the truncated ideal impulse response times the window function

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * low_cutoff_freq / sampling_freq;
  double fwT1 = 2 * M_PI * high_cutoff_freq / sampling_freq;

  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = (fwT1 - fwT0) / M_PI * w[n + M];
    else {
      taps[n + M] =  (sin (n * fwT1) - sin (n * fwT0)) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For band-pass, gain @ center freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M] * cos (n * (fwT0 + fwT1) * 0.5);

  gain /= fmax;	// normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;

  return taps;
}

//
//	=== Complex Band Pass ===
//

vector<gr_complex>
gr_firdes::complex_band_pass_2 (double gain,
		      double sampling_freq,
		      double low_cutoff_freq,	// Hz center of transition band
		      double high_cutoff_freq,	// Hz center of transition band
		      double transition_width,	// Hz width of transition band
		      double attenuation_dB,      // attenuation dB
		      win_type window_type,
		      double beta)		// used only with Kaiser
{
  sanity_check_2f_c (sampling_freq,
		   low_cutoff_freq,
		   high_cutoff_freq, transition_width);

  int ntaps = compute_ntaps_windes (sampling_freq, transition_width,
				    attenuation_dB);



  vector<gr_complex> taps(ntaps);
  vector<float> lptaps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  lptaps = low_pass_2(gain,sampling_freq,(high_cutoff_freq - low_cutoff_freq)/2,transition_width,attenuation_dB,window_type,beta);

  gr_complex *optr = &taps[0];
  float *iptr = &lptaps[0];
  float freq = M_PI * (high_cutoff_freq + low_cutoff_freq)/sampling_freq;
  float phase=0;
  if (lptaps.size() & 01) {
      phase = - freq * ( lptaps.size() >> 1 );
  } else phase = - freq/2.0 * ((1 + 2*lptaps.size()) >> 1);
  for(unsigned int i=0;i<lptaps.size();i++) {
      *optr++ = gr_complex(*iptr * cos(phase),*iptr * sin(phase));
      iptr++, phase += freq;
  }

  return taps;
}


vector<gr_complex>
gr_firdes::complex_band_pass (double gain,
		      double sampling_freq,
		      double low_cutoff_freq,	// Hz center of transition band
		      double high_cutoff_freq,	// Hz center of transition band
		      double transition_width,	// Hz width of transition band
		      win_type window_type,
		      double beta)		// used only with Kaiser
{
  sanity_check_2f_c (sampling_freq,
		   low_cutoff_freq,
		   high_cutoff_freq, transition_width);

  int ntaps = compute_ntaps (sampling_freq, transition_width,
			     window_type, beta);

  // construct the truncated ideal impulse response times the window function

  vector<gr_complex> taps(ntaps);
  vector<float> lptaps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  lptaps = low_pass(gain,sampling_freq,(high_cutoff_freq - low_cutoff_freq)/2,transition_width,window_type,beta);

  gr_complex *optr = &taps[0];
  float *iptr = &lptaps[0];
  float freq = M_PI * (high_cutoff_freq + low_cutoff_freq)/sampling_freq;
  float phase=0;
  if (lptaps.size() & 01) {
      phase = - freq * ( lptaps.size() >> 1 );
  } else phase = - freq/2.0 * ((1 + 2*lptaps.size()) >> 1);
  for(unsigned int i=0;i<lptaps.size();i++) {
      *optr++ = gr_complex(*iptr * cos(phase),*iptr * sin(phase));
      iptr++, phase += freq;
  }

  return taps;
}

//
//	=== Band Reject ===
//

vector<float>
gr_firdes::band_reject_2 (double gain,
  		        double sampling_freq,
		        double low_cutoff_freq,	 // Hz center of transition band
		        double high_cutoff_freq, // Hz center of transition band
		        double transition_width, // Hz width of transition band
		        double attenuation_dB,   // attenuation dB
		        win_type window_type,
		        double beta)		 // used only with Kaiser
{
  sanity_check_2f (sampling_freq,
		   low_cutoff_freq,
		   high_cutoff_freq, transition_width);

  int ntaps = compute_ntaps_windes (sampling_freq, transition_width,
				    attenuation_dB);

  // construct the truncated ideal impulse response times the window function

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * low_cutoff_freq / sampling_freq;
  double fwT1 = 2 * M_PI * high_cutoff_freq / sampling_freq;

  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = 1.0 + ((fwT0 - fwT1) / M_PI * w[n + M]);
    else {
      taps[n + M] =  (sin (n * fwT0) - sin (n * fwT1)) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For band-reject, gain @ zero freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M];

  gain /= fmax;	// normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;

  return taps;
}

vector<float>
gr_firdes::band_reject (double gain,
  		        double sampling_freq,
		        double low_cutoff_freq,	 // Hz center of transition band
		        double high_cutoff_freq, // Hz center of transition band
		        double transition_width, // Hz width of transition band
		        win_type window_type,
		        double beta)		 // used only with Kaiser
{
  sanity_check_2f (sampling_freq,
		   low_cutoff_freq,
		   high_cutoff_freq, transition_width);

  int ntaps = compute_ntaps (sampling_freq, transition_width,
			     window_type, beta);

  // construct the truncated ideal impulse response times the window function

  vector<float> taps(ntaps);
  vector<float> w = window (window_type, ntaps, beta);

  int M = (ntaps - 1) / 2;
  double fwT0 = 2 * M_PI * low_cutoff_freq / sampling_freq;
  double fwT1 = 2 * M_PI * high_cutoff_freq / sampling_freq;

  for (int n = -M; n <= M; n++){
    if (n == 0)
      taps[n + M] = 1.0 + ((fwT0 - fwT1) / M_PI * w[n + M]);
    else {
      taps[n + M] =  (sin (n * fwT0) - sin (n * fwT1)) / (n * M_PI) * w[n + M];
    }
  }

  // find the factor to normalize the gain, fmax.
  // For band-reject, gain @ zero freq = 1.0

  double fmax = taps[0 + M];
  for (int n = 1; n <= M; n++)
    fmax += 2 * taps[n + M];

  gain /= fmax;	// normalize

  for (int i = 0; i < ntaps; i++)
    taps[i] *= gain;

  return taps;
}

//
// Hilbert Transform
//

vector<float>
gr_firdes::hilbert (unsigned int ntaps,
		    win_type windowtype,
		    double beta)
{
  if(!(ntaps & 1))
    throw std::out_of_range("Hilbert:  Must have odd number of taps");

  vector<float> taps(ntaps);
  vector<float> w = window (windowtype, ntaps, beta);
  unsigned int h = (ntaps-1)/2;
  float gain=0;
  for (unsigned int i = 1; i <= h; i++)
    {
      if(i&1)
	{
	  float x = 1/(float)i;
	  taps[h+i] = x * w[h+i];
	  taps[h-i] = -x * w[h-i];
	  gain = taps[h+i] - gain;
	}
      else
	taps[h+i] = taps[h-i] = 0;
    }
  gain = 2 * fabs(gain);
  for ( unsigned int i = 0; i < ntaps; i++)
      taps[i] /= gain;
  return taps;
}

//
// Gaussian
//

vector<float>
gr_firdes::gaussian (double gain,
		     double spb,
		     double bt,
		     int ntaps)
{

  vector<float> taps(ntaps);
  double scale = 0;
  double dt = 1.0/spb;
  double s = 1.0/(sqrt(log(2.0)) / (2*M_PI*bt));
  double t0 = -0.5 * ntaps;
  double ts;
  for(int i=0;i<ntaps;i++)
    {
      t0++;
      ts = s*dt*t0;
      taps[i] = exp(-0.5*ts*ts);
      scale += taps[i];
    }
  for(int i=0;i<ntaps;i++)
    taps[i] = taps[i] / scale * gain;
  return taps;
}


//
// Root Raised Cosine
//

vector<float>
gr_firdes::root_raised_cosine (double gain,
			       double sampling_freq,
			       double symbol_rate,
			       double alpha,
			       int ntaps)
{
  ntaps |= 1;	// ensure that ntaps is odd

  double spb = sampling_freq/symbol_rate; // samples per bit/symbol
  vector<float> taps(ntaps);
  double scale = 0;
  for(int i=0;i<ntaps;i++)
    {
      double x1,x2,x3,num,den;
      double xindx = i - ntaps/2;
      x1 = M_PI * xindx/spb;
      x2 = 4 * alpha * xindx / spb;
      x3 = x2*x2 - 1;
      if( fabs(x3) >= 0.000001 )  // Avoid Rounding errors...
	{
	  if( i != ntaps/2 )
	    num = cos((1+alpha)*x1) + sin((1-alpha)*x1)/(4*alpha*xindx/spb);
	  else
	    num = cos((1+alpha)*x1) + (1-alpha) * M_PI / (4*alpha);
	  den = x3 * M_PI;
	}
      else
	{
	  if(alpha==1)
	    {
	      taps[i] = -1;
	      continue;
	    }
	  x3 = (1-alpha)*x1;
	  x2 = (1+alpha)*x1;
	  num = (sin(x2)*(1+alpha)*M_PI
		 - cos(x3)*((1-alpha)*M_PI*spb)/(4*alpha*xindx)
		 + sin(x3)*spb*spb/(4*alpha*xindx*xindx));
	  den = -32 * M_PI * alpha * alpha * xindx/spb;
	}
      taps[i] = 4 * alpha * num / den;
      scale += taps[i];
    }

  for(int i=0;i<ntaps;i++)
    taps[i] = taps[i] * gain / scale;

  return taps;
}

//
//	=== Utilities ===
//

// delta_f / width_factor gives number of taps required.
static const float width_factor[5] = {   // indexed by win_type
  3.3,			// WIN_HAMMING
  3.1,			// WIN_HANN
  5.5,              	// WIN_BLACKMAN
  2.0,                  // WIN_RECTANGULAR
  //5.0                   // WIN_KAISER  (guesstimate compromise)
  //2.0                   // WIN_KAISER  (guesstimate compromise)
  10.0			// WIN_KAISER
};

int
gr_firdes::compute_ntaps_windes(double sampling_freq,
			         double transition_width, // this is frequency, not relative frequency
			   	 double attenuation_dB)
{
  // Based on formula from Multirate Signal Processing for
  // Communications Systems, fredric j harris
  int ntaps = (int)(attenuation_dB*sampling_freq/(22.0*transition_width));
  if ((ntaps & 1) == 0)	// if even...
    ntaps++;		// ...make odd
  return ntaps;
}

int
gr_firdes::compute_ntaps (double sampling_freq,
			  double transition_width,
			  win_type window_type,
			  double beta)
{
  // normalized transition width
  double delta_f = transition_width / sampling_freq;

  // compute number of taps required for given transition width
  int ntaps = (int) (width_factor[window_type] / delta_f + 0.5);
  if ((ntaps & 1) == 0)	// if even...
    ntaps++;		// ...make odd

  return ntaps;
}

double gr_firdes::bessi0(double x)
{
	double ax,ans;
	double y;

	ax=fabs(x);
	if (ax < 3.75)
	{
		y=x/3.75;
		y*=y;
		ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492
			+y*(0.2659732+y*(0.360768e-1+y*0.45813e-2)))));
	}
	else
	{
		y=3.75/ax;
		ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1
			+y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2
			+y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1
			+y*0.392377e-2))))))));
	}
	return ans;
}
vector<float>
gr_firdes::window (win_type type, int ntaps, double beta)
{
  vector<float> taps(ntaps);
  int	M = ntaps - 1;		// filter order

  switch (type){
  case WIN_RECTANGULAR:
    for (int n = 0; n < ntaps; n++)
      taps[n] = 1;

  case WIN_HAMMING:
    for (int n = 0; n < ntaps; n++)
      taps[n] = 0.54 - 0.46 * cos ((2 * M_PI * n) / M);
    break;

  case WIN_HANN:
    for (int n = 0; n < ntaps; n++)
      taps[n] = 0.5 - 0.5 * cos ((2 * M_PI * n) / M);
    break;

  case WIN_BLACKMAN:
    for (int n = 0; n < ntaps; n++)
      taps[n] = 0.42 - 0.50 * cos ((2*M_PI * n) / (M-1)) - 0.08 * cos ((4*M_PI * n) / (M-1));
    break;

  case WIN_BLACKMAN_hARRIS:
    for (int n = -ntaps/2; n < ntaps/2; n++)
      taps[n+ntaps/2] = 0.35875 + 0.48829*cos((2*M_PI * n) / (float)M) +
	0.14128*cos((4*M_PI * n) / (float)M) + 0.01168*cos((6*M_PI * n) / (float)M);
    break;

#if 0
  case WIN_KAISER:
    for (int n = 0; n < ntaps; n++)
	taps[n] = bessi0(beta*sqrt(1.0 - (4.0*n/(M*M))))/bessi0(beta);
    break;
#else

  case WIN_KAISER:
    {
      double IBeta = 1.0/Izero(beta);
      double inm1 = 1.0/((double)(ntaps));
      double temp;
      //fprintf(stderr, "IBeta = %g; inm1 = %g\n", IBeta, inm1);

      for (int i=0; i<ntaps; i++) {
	temp = i * inm1;
	//fprintf(stderr, "temp = %g\n", temp);
	taps[i] = Izero(beta*sqrt(1.0-temp*temp)) * IBeta;
	//fprintf(stderr, "taps[%d] = %g\n", i, taps[i]);
      }
    }
    break;

#endif
  default:
    throw std::out_of_range ("gr_firdes:window: type out of range");
  }

  return taps;
}

void
gr_firdes::sanity_check_1f (double sampling_freq,
			    double fa,			// cutoff freq
			    double transition_width)
{
  if (sampling_freq <= 0.0)
    throw std::out_of_range ("gr_firdes check failed: sampling_freq > 0");

  if (fa <= 0.0 || fa > sampling_freq / 2)
    throw std::out_of_range ("gr_firdes check failed: 0 < fa <= sampling_freq / 2");

  if (transition_width <= 0)
    throw std::out_of_range ("gr_dirdes check failed: transition_width > 0");
}

void
gr_firdes::sanity_check_2f (double sampling_freq,
			    double fa,			// first cutoff freq
			    double fb,			// second cutoff freq
			    double transition_width)
{
  if (sampling_freq <= 0.0)
    throw std::out_of_range ("gr_firdes check failed: sampling_freq > 0");

  if (fa <= 0.0 || fa > sampling_freq / 2)
    throw std::out_of_range ("gr_firdes check failed: 0 < fa <= sampling_freq / 2");

  if (fb <= 0.0 || fb > sampling_freq / 2)
    throw std::out_of_range ("gr_firdes check failed: 0 < fb <= sampling_freq / 2");

  if (fa > fb)
    throw std::out_of_range ("gr_firdes check failed: fa <= fb");

  if (transition_width <= 0)
    throw std::out_of_range ("gr_firdes check failed: transition_width > 0");
}

void
gr_firdes::sanity_check_2f_c (double sampling_freq,
			    double fa,			// first cutoff freq
			    double fb,			// second cutoff freq
			    double transition_width)
{
  if (sampling_freq <= 0.0)
    throw std::out_of_range ("gr_firdes check failed: sampling_freq > 0");

  if (fa < -sampling_freq / 2 || fa > sampling_freq / 2)
    throw std::out_of_range ("gr_firdes check failed: 0 < fa <= sampling_freq / 2");

  if (fb < -sampling_freq / 2  || fb > sampling_freq / 2)
    throw std::out_of_range ("gr_firdes check failed: 0 < fb <= sampling_freq / 2");

  if (fa > fb)
    throw std::out_of_range ("gr_firdes check failed: fa <= fb");

  if (transition_width <= 0)
    throw std::out_of_range ("gr_firdes check failed: transition_width > 0");
}