1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/* -*- c++ -*- */
/*
* Copyright 2010 Free Software Foundation, Inc.
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
// Calculate the taps for the CPM phase responses
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <cmath>
#include <cfloat>
#include <gr_cpm.h>
//! Normalised sinc function, sinc(x)=sin(pi*x)/pi*x
inline double
sinc(double x)
{
if (x == 0) {
return 1.0;
}
return sin(M_PI * x) / (M_PI * x);
}
//! Taps for L-RC CPM (Raised cosine of length L symbols)
std::vector<float>
generate_cpm_lrc_taps(unsigned samples_per_sym, unsigned L)
{
std::vector<float> taps(samples_per_sym * L, 1.0/L/samples_per_sym);
for (unsigned i = 0; i < samples_per_sym * L; i++) {
taps[i] *= 1 - cos(M_TWOPI * i / L / samples_per_sym);
}
return taps;
}
/*! Taps for L-SRC CPM (Spectral raised cosine of length L symbols).
*
* L-SRC has a time-continuous phase response function of
*
* g(t) = 1/LT * sinc(2t/LT) * cos(beta * 2pi t / LT) / (1 - (4beta / LT * t)^2)
*
* which is the Fourier transform of a cos-rolloff function with rolloff
* beta, and looks like a sinc-function, multiplied with a rolloff term.
* We return the main lobe of the sinc, i.e., everything between the
* zero crossings.
* The time-discrete IR is thus
*
* g(k) = 1/Ls * sinc(2k/Ls) * cos(beta * pi k / Ls) / (1 - (4beta / Ls * k)^2)
* where k = 0...Ls-1
* and s = samples per symbol.
*/
std::vector<float>
generate_cpm_lsrc_taps(unsigned samples_per_sym, unsigned L, double beta)
{
double Ls = (double) L * samples_per_sym;
std::vector<double> taps_d(L * samples_per_sym, 0.0);
std::vector<float> taps(L * samples_per_sym, 0.0);
double sum = 0;
for (unsigned i = 0; i < samples_per_sym * L; i++) {
double k = i - Ls/2; // Causal to acausal
taps_d[i] = 1.0 / Ls * sinc(2.0 * k / Ls);
// For k = +/-Ls/4*beta, the rolloff term's cos-function becomes zero
// and the whole thing converges to PI/4 (to prove this, use de
// l'hopital's rule).
if (fabs(fabs(k) - Ls/4/beta) < 2*DBL_EPSILON) {
taps_d[i] *= M_PI_4;
} else {
double tmp = 4.0 * beta * k / Ls;
taps_d[i] *= cos(beta * M_TWOPI * k / Ls) / (1 - tmp * tmp);
}
sum += taps_d[i];
}
for (unsigned i = 0; i < samples_per_sym * L; i++) {
taps[i] = (float) taps_d[i] / sum;
}
return taps;
}
//! Taps for L-REC CPM (Rectangular pulse shape of length L symbols)
std::vector<float>
generate_cpm_lrec_taps(unsigned samples_per_sym, unsigned L)
{
return std::vector<float>(samples_per_sym * L, 1.0/L/samples_per_sym);
}
//! Helper function for TFM
double tfm_g0(double k, double sps)
{
if (fabs(k) < 2 * DBL_EPSILON) {
return 1.145393004159143; // 1 + pi^2/48 / sqrt(2)
}
const double pi2_24 = 0.411233516712057; // pi^2/24
double f = M_PI * k / sps;
return sinc(k/sps) - pi2_24 * (2 * sin(f) - 2*f*cos(f) - f*f*sin(f)) / (f*f*f);
}
//! Taps for TFM CPM (Tamed frequency modulation)
//
// See [2, Chapter 2.7.2].
//
// [2]: Anderson, Aulin and Sundberg; Digital Phase Modulation
std::vector<float>
generate_cpm_tfm_taps(unsigned sps, unsigned L)
{
unsigned causal_shift = sps * L / 2;
std::vector<double> taps_d(sps * L, 0.0);
std::vector<float> taps(sps * L, 0.0);
double sum = 0;
for (unsigned i = 0; i < sps * L; i++) {
double k = (double)(((int)i) - ((int)causal_shift)); // Causal to acausal
taps_d[i] = tfm_g0(k - sps, sps) +
2 * tfm_g0(k, sps) +
tfm_g0(k + sps, sps);
sum += taps_d[i];
}
for (unsigned i = 0; i < sps * L; i++) {
taps[i] = (float) taps_d[i] / sum;
}
return taps;
}
//! Taps for Gaussian CPM. Phase response is truncated after \p L symbols.
// \p bt sets the 3dB-time-bandwidth product.
//
// Note: for h = 0.5, this is the phase response for GMSK.
//
// This C99-compatible formula for the taps is taken straight
// from [1, Chapter 9.2.3].
// A version in Q-notation can be found in [2, Chapter 2.7.2].
//
// [1]: Karl-Dirk Kammeyer; Nachrichtenübertragung, 4th Edition.
// [2]: Anderson, Aulin and Sundberg; Digital Phase Modulation
//
std::vector<float>
generate_cpm_gaussian_taps(unsigned samples_per_sym, unsigned L, double bt)
{
double Ls = (double) L * samples_per_sym;
std::vector<double> taps_d(L * samples_per_sym, 0.0);
std::vector<float> taps(L * samples_per_sym, 0.0);
// alpha = sqrt(2/ln(2)) * pi * BT
double alpha = 5.336446256636997 * bt;
for (unsigned i = 0; i < samples_per_sym * L; i++) {
double k = i - Ls/2; // Causal to acausal
taps_d[i] = (erf(alpha * (k / samples_per_sym + 0.5)) -
erf(alpha * (k / samples_per_sym - 0.5)))
* 0.5 / samples_per_sym;
taps[i] = (float) taps_d[i];
}
return taps;
}
std::vector<float>
gr_cpm::phase_response(cpm_type type, unsigned samples_per_sym, unsigned L, double beta)
{
switch (type) {
case LRC:
return generate_cpm_lrc_taps(samples_per_sym, L);
case LSRC:
return generate_cpm_lsrc_taps(samples_per_sym, L, beta);
case LREC:
return generate_cpm_lrec_taps(samples_per_sym, L);
case TFM:
return generate_cpm_tfm_taps(samples_per_sym, L);
case GAUSSIAN:
return generate_cpm_gaussian_taps(samples_per_sym, L, beta);
default:
return generate_cpm_lrec_taps(samples_per_sym, 1);
}
}
|