summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/examples/pfb/fmtest.py
blob: b9dd9b3823ed685fd256b2e811f8ea919aa6503b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
#
# Copyright 2009 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#

from gnuradio import gr, blks2
import sys, math, time

try:
    import scipy
    from scipy import fftpack
except ImportError:
    print "Error: Program requires scipy (see: www.scipy.org)."
    sys.exit(1)

try:
    import pylab
except ImportError:
    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
    sys.exit(1)


class fmtx(gr.hier_block2):
    def __init__(self, lo_freq, audio_rate, if_rate):

        gr.hier_block2.__init__(self, "build_fm",
                                gr.io_signature(1, 1, gr.sizeof_float),      # Input signature
                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)

        # Local oscillator
        lo = gr.sig_source_c (if_rate,        # sample rate
                              gr.GR_SIN_WAVE, # waveform type
                              lo_freq,        #frequency
                              1.0,            # amplitude
                              0)              # DC Offset
        mixer = gr.multiply_cc ()

        self.connect (self, fmtx, (mixer, 0))
        self.connect (lo, (mixer, 1))
        self.connect (mixer, self)

class fmtest(gr.top_block):
    def __init__(self):
        gr.top_block.__init__(self)

        self._nsamples = 1000000
        self._audio_rate = 8000

        # Set up N channels with their own baseband and IF frequencies
        self._N = 5
        chspacing = 16000
        freq = [10, 20, 30, 40, 50]
        f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]

        self._if_rate = 4*self._N*self._audio_rate

        # Create a signal source and frequency modulate it
        self.sum = gr.add_cc ()
        for n in xrange(self._N):
            sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
            fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
            self.connect(sig, fm)
            self.connect(fm, (self.sum, n))

        self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
        self.snk_tx = gr.vector_sink_c()
        self.channel = blks2.channel_model(0.1)

        self.connect(self.sum, self.head, self.channel, self.snk_tx)


        # Design the channlizer
        self._M = 10
        bw = chspacing/2.0
        t_bw = chspacing/10.0
        self._chan_rate = self._if_rate / self._M
        self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw,
                                          attenuation_dB=100,
                                          window=gr.firdes.WIN_BLACKMAN_hARRIS)
        tpc = math.ceil(float(len(self._taps)) /  float(self._M))

        print "Number of taps:     ", len(self._taps)
        print "Number of channels: ", self._M
        print "Taps per channel:   ", tpc

        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)

        self.connect(self.channel, self.pfb)

        # Create a file sink for each of M output channels of the filter and connect it
        self.fmdet = list()
        self.squelch = list()
        self.snks = list()
        for i in xrange(self._M):
            self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
            self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
            self.snks.append(gr.vector_sink_f())
            self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])

    def num_tx_channels(self):
        return self._N

    def num_rx_channels(self):
        return self._M

def main():

    fm = fmtest()

    tstart = time.time()
    fm.run()
    tend = time.time()

    if 1:
        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")

        Ns = 10000
        Ne = 100000

        fftlen = 8192
        winfunc = scipy.blackman

        # Plot transmitted signal
        fs = fm._if_rate

        d = fm.snk_tx.data()[Ns:Ns+Ne]
        sp1_f = fig1.add_subplot(2, 1, 1)

        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
                           window = lambda d: d*winfunc(fftlen),
                           visible=False)
        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
        p1_f = sp1_f.plot(f_in, X_in, "b")
        sp1_f.set_xlim([min(f_in), max(f_in)+1])
        sp1_f.set_ylim([-120.0, 20.0])

        sp1_f.set_title("Input Signal", weight="bold")
        sp1_f.set_xlabel("Frequency (Hz)")
        sp1_f.set_ylabel("Power (dBW)")

        Ts = 1.0/fs
        Tmax = len(d)*Ts

        t_in = scipy.arange(0, Tmax, Ts)
        x_in = scipy.array(d)
        sp1_t = fig1.add_subplot(2, 1, 2)
        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
        sp1_t.set_ylim([-5, 5])

        # Set up the number of rows and columns for plotting the subfigures
        Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
        Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
        if(fm.num_rx_channels() % Ncols != 0):
            Nrows += 1

        # Plot each of the channels outputs. Frequencies on Figure 2 and
        # time signals on Figure 3
        fs_o = fm._audio_rate
        for i in xrange(len(fm.snks)):
            # remove issues with the transients at the beginning
            # also remove some corruption at the end of the stream
            #    this is a bug, probably due to the corner cases
            d = fm.snks[i].data()[Ns:Ne]

            sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
            X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
                               window = lambda d: d*winfunc(fftlen),
                               visible=False)
            #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
            X_o = 10.0*scipy.log10(abs(X))
            #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
            f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
            p2_f = sp2_f.plot(f_o, X_o, "b")
            sp2_f.set_xlim([min(f_o), max(f_o)+0.1])
            sp2_f.set_ylim([-120.0, 20.0])
            sp2_f.grid(True)

            sp2_f.set_title(("Channel %d" % i), weight="bold")
            sp2_f.set_xlabel("Frequency (kHz)")
            sp2_f.set_ylabel("Power (dBW)")


            Ts = 1.0/fs_o
            Tmax = len(d)*Ts
            t_o = scipy.arange(0, Tmax, Ts)

            x_t = scipy.array(d)
            sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
            p2_t = sp2_t.plot(t_o, x_t.real, "b")
            p2_t = sp2_t.plot(t_o, x_t.imag, "r")
            sp2_t.set_xlim([min(t_o), max(t_o)+1])
            sp2_t.set_ylim([-1, 1])

            sp2_t.set_xlabel("Time (s)")
            sp2_t.set_ylabel("Amplitude")


        pylab.show()


if __name__ == "__main__":
    main()