1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/* -*- c++ -*- */
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "qa_gcp_fft_1d_r2.h"
#include <cppunit/TestAssert.h>
#include <gcp_fft_1d_r2.h>
#include <fftw3.h>
#include <stdio.h>
#include <stdlib.h> // random, posix_memalign
#include <algorithm>
typedef boost::shared_ptr<void> void_sptr;
// handle to embedded SPU executable
extern spe_program_handle_t gcell_all;
/*
* Return pointer to cache-aligned chunk of storage of size size bytes.
* Throw if can't allocate memory. The storage should be freed
* with "free" when done. The memory is initialized to zero.
*/
static void *
aligned_alloc(size_t size, size_t alignment = 128)
{
void *p = 0;
if (posix_memalign(&p, alignment, size) != 0){
perror("posix_memalign");
throw std::runtime_error("memory");
}
memset(p, 0, size); // zero the memory
return p;
}
class free_deleter {
public:
void operator()(void *p) {
free(p);
}
};
static boost::shared_ptr<void>
aligned_alloc_sptr(size_t size, size_t alignment = 128)
{
return boost::shared_ptr<void>(aligned_alloc(size, alignment), free_deleter());
}
// test forward FFT
void
qa_gcp_fft_1d_r2::t1()
{
gc_jm_options opts;
opts.program_handle = gc_program_handle_from_address(&gcell_all);
opts.nspes = 1;
gc_job_manager_sptr mgr = gc_make_job_manager(&opts);
#if 1
for (int log2_fft_size = 5; log2_fft_size <= 12; log2_fft_size++){
test(mgr, log2_fft_size, true);
}
#else
test(mgr, 5, true);
#endif
}
// test inverse FFT
void
qa_gcp_fft_1d_r2::t2()
{
gc_jm_options opts;
opts.program_handle = gc_program_handle_from_address(&gcell_all);
opts.nspes = 1;
gc_job_manager_sptr mgr = gc_make_job_manager(&opts);
#if 1
for (int log2_fft_size = 5; log2_fft_size <= 12; log2_fft_size++){
test(mgr, log2_fft_size, false);
}
#else
test(mgr, 5, false);
#endif
}
void
qa_gcp_fft_1d_r2::t3()
{
// FIXME Test fwd and inv with windowing option
}
void
qa_gcp_fft_1d_r2::t4()
{
// FIXME Test fwd and inv with shift option
}
static inline float
abs_diff(std::complex<float> x, std::complex<float> y)
{
return std::max(std::abs(x.real()-y.real()),
std::abs(x.imag()-y.imag()));
}
static float
float_abs_rel_error(float ref, float actual)
{
float delta = ref - actual;
if (std::abs(ref) < 1e-18)
ref = 1e-18;
return std::abs(delta/ref);
}
static float
abs_rel_error(std::complex<float> ref, std::complex<float> actual)
{
return std::max(float_abs_rel_error(ref.real(), actual.real()),
float_abs_rel_error(ref.imag(), actual.imag()));
}
void
qa_gcp_fft_1d_r2::test(gc_job_manager_sptr mgr, int log2_fft_size, bool forward)
{
int fft_size = 1 << log2_fft_size;
// allocate aligned buffers with boost shared_ptr's
void_sptr fftw_in_void = aligned_alloc_sptr(fft_size * sizeof(std::complex<float>), 128);
void_sptr fftw_out_void = aligned_alloc_sptr(fft_size * sizeof(std::complex<float>), 128);
void_sptr cell_in_void = aligned_alloc_sptr(fft_size * sizeof(std::complex<float>), 128);
void_sptr cell_out_void = aligned_alloc_sptr(fft_size * sizeof(std::complex<float>), 128);
void_sptr cell_twiddle_void = aligned_alloc_sptr(fft_size/4 * sizeof(std::complex<float>), 128);
// cast them to the type we really want
std::complex<float> *fftw_in = (std::complex<float> *) fftw_in_void.get();
std::complex<float> *fftw_out = (std::complex<float> *) fftw_out_void.get();
std::complex<float> *cell_in = (std::complex<float> *) cell_in_void.get();
std::complex<float> *cell_out = (std::complex<float> *) cell_out_void.get();
std::complex<float> *cell_twiddle = (std::complex<float> *) cell_twiddle_void.get();
gcp_fft_1d_r2_twiddle(log2_fft_size, cell_twiddle);
srandom(1); // we want reproducibility
// initialize the input buffers
for (int i = 0; i < fft_size; i++){
std::complex<float> t((float) (random() & 0xfffff), (float) (random() & 0xfffff));
fftw_in[i] = t;
cell_in[i] = t;
}
// ------------------------------------------------------------------------
// compute the reference answer
fftwf_plan plan = fftwf_plan_dft_1d (fft_size,
reinterpret_cast<fftwf_complex *>(fftw_in),
reinterpret_cast<fftwf_complex *>(fftw_out),
forward ? FFTW_FORWARD : FFTW_BACKWARD,
FFTW_ESTIMATE);
if (plan == 0){
fprintf(stderr, "qa_gcp_fft_1d_r2: error creating FFTW plan\n");
throw std::runtime_error ("fftwf_plan_dft_r2c_1d failed");
}
fftwf_execute(plan);
fftwf_destroy_plan(plan);
// ------------------------------------------------------------------------
// compute the answer on the cell
gc_job_desc_sptr jd = gcp_fft_1d_r2_submit(mgr, log2_fft_size, forward, false,
cell_out, cell_in, cell_twiddle, 0);
if (!mgr->wait_job(jd.get())){
fprintf(stderr, "wait_job failed: %s\n", gc_job_status_string(jd->status).c_str());
CPPUNIT_ASSERT(0);
}
// ------------------------------------------------------------------------
// compute the maximum of the relative error
float max_rel = 0.0;
for (int i = 0; i < fft_size; i++){
max_rel = std::max(max_rel, abs_rel_error(fftw_out[i], cell_out[i]));
if (0)
printf("(%16.3f, %16.3fj) (%16.3f, %16.3fj) (%16.3f, %16.3fj)\n",
fftw_out[i].real(), fftw_out[i].imag(),
cell_out[i].real(), cell_out[i].imag(),
fftw_out[i].real() - cell_out[i].real(),
fftw_out[i].imag() - cell_out[i].imag());
}
fprintf(stdout, "%s fft_size = %4d max_rel_error = %e\n",
forward ? "fwd" : "rev", fft_size, max_rel);
CPPUNIT_ASSERT(max_rel <= 5e-3);
}
|