1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
|
/* -*- c++ -*- */
/*
* Copyright 2007,2008 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
// #define ENABLE_GC_LOGGING // define to enable logging
#include <spu_intrinsics.h>
#include <spu_mfcio.h>
#include <sync_utils.h>
#include "gc_spu_config.h"
#include "gc_spu_args.h"
#include "gc_job_desc.h"
#include "gc_mbox.h"
#include "gc_jd_queue.h"
#include "gc_delay.h"
#include "gc_declare_proc.h"
#include "gc_random.h"
#include "spu_buffers.h"
#include <string.h>
#include <assert.h>
#include <stdio.h>
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
//! round x down to p2 boundary (p2 must be a power-of-2)
#define ROUND_DN(x, p2) ((x) & ~((p2)-1))
//! round x up to p2 boundary (p2 must be a power-of-2)
#define ROUND_UP(x, p2) (((x)+((p2)-1)) & ~((p2)-1))
#define USE_LLR_LOST_EVENT 0 // define to 0 or 1
int gc_sys_tag; // tag for misc DMA operations
static gc_spu_args_t spu_args;
static struct gc_proc_def *gc_proc_def; // procedure entry points
// ------------------------------------------------------------------------
// state for DMA'ing arguments in and out
static int get_tag; // 1 tag for job arg gets
static int put_tags; // 2 tags for job arg puts
static int pb_idx = 0; // current put buffer index (0 or 1)
// bitmask (bit per put buffer): bit is set if DMA is started but not complete
static int put_in_progress = 0;
#define PBI_MASK(_pbi_) (1 << (_pbi_))
// ------------------------------------------------------------------------
// our working copy of the completion info
static gc_comp_info_t comp_info = {
.in_use = 1,
.ncomplete = 0
};
static int ci_idx = 0; // index of current comp_info
static int ci_tags; // two consecutive dma tags
// ------------------------------------------------------------------------
/*
* Wait until EA copy of comp_info[idx].in_use is 0
*/
static void
wait_for_ppe_to_be_done_with_comp_info(int idx)
{
char _tmp[256];
char *buf = (char *) ALIGN(_tmp, 128); // get cache-aligned buffer
gc_comp_info_t *p = (gc_comp_info_t *) buf;
assert(sizeof(gc_comp_info_t) == 128);
do {
mfc_get(buf, spu_args.comp_info[idx], 128, gc_sys_tag, 0, 0);
mfc_write_tag_mask(1 << gc_sys_tag);
mfc_read_tag_status_all();
if (p->in_use == 0)
return;
gc_udelay(5);
} while (1);
}
static void
flush_completion_info(void)
{
// events: 0x3X
static int total_complete = 0;
if (comp_info.ncomplete == 0)
return;
// ensure that PPE is done with the buffer we're about to overwrite
wait_for_ppe_to_be_done_with_comp_info(ci_idx);
// dma the comp_info out to PPE
int tag = ci_tags + ci_idx;
mfc_put(&comp_info, spu_args.comp_info[ci_idx], sizeof(gc_comp_info_t), tag, 0, 0);
// we need to wait for the completion info to finish, as well as
// any EA argument puts.
int tag_mask = 1 << tag; // the comp_info tag
if (put_in_progress & PBI_MASK(0))
tag_mask |= (1 << (put_tags + 0));
if (put_in_progress & PBI_MASK(1))
tag_mask |= (1 << (put_tags + 1));
gc_log_write2(GCL_SS_SYS, 0x30, put_in_progress, tag_mask);
mfc_write_tag_mask(tag_mask); // the tags we're interested in
mfc_read_tag_status_all(); // wait for DMA to complete
put_in_progress = 0; // mark them all complete
total_complete += comp_info.ncomplete;
gc_log_write4(GCL_SS_SYS, 0x31,
put_in_progress, ci_idx, comp_info.ncomplete, total_complete);
// send PPE a message
spu_writech(SPU_WrOutIntrMbox, MK_MBOX_MSG(OP_JOBS_DONE, ci_idx));
ci_idx ^= 0x1; // switch buffers
comp_info.in_use = 1;
comp_info.ncomplete = 0;
}
// ------------------------------------------------------------------------
static unsigned int backoff; // current backoff value in clock cycles
static unsigned int _backoff_start;
static unsigned int _backoff_cap;
/*
* For 3.2 GHz SPE
*
* 12 4095 cycles 1.3 us
* 13 8191 cycles 2.6 us
* 14 16383 cycles 5.1 us
* 15 32767 cycles 10.2 us
* 16 20.4 us
* 17 40.8 us
* 18 81.9 us
* 19 163.8 us
* 20 327.7 us
* 21 655.4 us
*/
static unsigned char log2_backoff_start[16] = {
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// -------------------------------------------------------------
12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16
};
static unsigned char log2_backoff_cap[16] = {
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// -------------------------------------------------------------
17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21
};
static void
backoff_init(void)
{
_backoff_cap = (1 << (log2_backoff_cap[(spu_args.nspus - 1) & 0xf])) - 1;
_backoff_start = (1 << (log2_backoff_start[(spu_args.nspus - 1) & 0xf])) - 1;
backoff = _backoff_start;
}
static void
backoff_reset(void)
{
backoff = _backoff_start;
}
#if 0
static void
backoff_delay(void)
{
gc_cdelay(backoff);
// capped exponential backoff
backoff = ((backoff << 1) + 1) & _backoff_cap;
}
#else
#define RANDOM_WEIGHT 0.2
static void
backoff_delay(void)
{
gc_cdelay(backoff);
backoff = ((backoff << 1) + 1);
if (backoff > _backoff_cap)
backoff = _backoff_cap;
float r = (RANDOM_WEIGHT * (2.0 * (gc_uniform_deviate() - 0.5)));
backoff = backoff * (1.0 + r);
}
#endif
// ------------------------------------------------------------------------
static inline unsigned int
make_mask(int nbits)
{
return ~(~0 << nbits);
}
static unsigned int dc_work;
static int dc_put_tag;
static unsigned char *dc_ls_base;
static gc_eaddr_t dc_ea_base;
// divide and conquer
static void
d_and_c(unsigned int offset, unsigned int len)
{
unsigned int mask = make_mask(len) << offset;
unsigned int t = mask & dc_work;
if (t == 0) // nothing to do
return;
if (t == mask){ // got a match, generate dma
mfc_put(dc_ls_base + offset, dc_ea_base + offset, len, dc_put_tag, 0, 0);
}
else { // bisect
len >>= 1;
d_and_c(offset, len);
d_and_c(offset + len, len);
}
}
// Handle the nasty case of a dma xfer that's less than 16 bytes long.
// len is guaranteed to be in [1, 15]
static void
handle_slow_and_tedious_dma(gc_eaddr_t ea, unsigned char *ls,
unsigned int len, int put_tag)
{
// Set up for divide and conquer
unsigned int alignment = ((uintptr_t) ls) & 0x7;
dc_work = make_mask(len) << alignment;
dc_ls_base = (unsigned char *) ROUND_DN((uintptr_t) ls, 8);
dc_ea_base = ROUND_DN(ea, (gc_eaddr_t) 8);
dc_put_tag = put_tag;
d_and_c( 0, 8);
d_and_c( 8, 8);
d_and_c(16, 8);
}
static void
process_job(gc_eaddr_t jd_ea, gc_job_desc_t *jd)
{
// events: 0x2X
jd->status = JS_OK; // assume success
if (jd->proc_id >= spu_args.nproc_defs)
jd->status = JS_UNKNOWN_PROC;
else {
if (jd->eaa.nargs == 0)
(*gc_proc_def[jd->proc_id].proc)(&jd->input, &jd->output, &jd->eaa);
else { // handle EA args that must be DMA'd in/out
gc_job_ea_args_t *eaa = &jd->eaa;
int NELMS =
MAX(MAX_ARGS_EA,
(GC_SPU_BUFSIZE + MFC_MAX_DMA_SIZE - 1) / MFC_MAX_DMA_SIZE);
mfc_list_element_t dma_get_list[NELMS];
//mfc_list_element_t dma_put_list[NELMS];
memset(dma_get_list, 0, sizeof(dma_get_list));
//memset(dma_put_list, 0, sizeof(dma_put_list));
int gli = 0; // get list index
//int pli = 0; // put list index
unsigned char *get_base = _gci_getbuf[0];
unsigned char *get_t = get_base;
unsigned int total_get_dma_len = 0;
unsigned char *put_base = _gci_putbuf[pb_idx];
unsigned char *put_t = put_base;
unsigned int total_put_alloc = 0;
int put_tag = put_tags + pb_idx;
// Do we have any "put" args? If so ensure that previous
// dma from this buffer is complete
gc_log_write2(GCL_SS_SYS, 0x24, put_in_progress, jd->sys.direction_union);
if ((jd->sys.direction_union & GCJD_DMA_PUT)
&& (put_in_progress & PBI_MASK(pb_idx))){
gc_log_write2(GCL_SS_SYS, 0x25, put_in_progress, 1 << put_tag);
mfc_write_tag_mask(1 << put_tag); // the tag we're interested in
mfc_read_tag_status_all(); // wait for DMA to complete
put_in_progress &= ~(PBI_MASK(pb_idx));
gc_log_write1(GCL_SS_SYS, 0x26, put_in_progress);
}
// for now, all EA's must have the same high 32-bits
gc_eaddr_t common_ea = eaa->arg[0].ea_addr;
// assign LS addresses for buffers
for (unsigned int i = 0; i < eaa->nargs; i++){
gc_eaddr_t ea_base = 0;
unsigned char *ls_base;
int offset;
unsigned int dma_len;
if (eaa->arg[i].direction == GCJD_DMA_GET){
ea_base = ROUND_DN(eaa->arg[i].ea_addr, (gc_eaddr_t) CACHE_LINE_SIZE);
offset = eaa->arg[i].ea_addr & (CACHE_LINE_SIZE-1);
dma_len = ROUND_UP(eaa->arg[i].get_size + offset, CACHE_LINE_SIZE);
total_get_dma_len += dma_len;
if (total_get_dma_len > GC_SPU_BUFSIZE){
jd->status = JS_ARGS_TOO_LONG;
goto wrap_up;
}
ls_base = get_t;
get_t += dma_len;
eaa->arg[i].ls_addr = ls_base + offset;
if (0){
assert((mfc_ea2l(eaa->arg[i].ea_addr) & 0x7f) == ((intptr_t)eaa->arg[i].ls_addr & 0x7f));
assert((ea_base & 0x7f) == 0);
assert(((intptr_t)ls_base & 0x7f) == 0);
assert((dma_len & 0x7f) == 0);
assert((eaa->arg[i].get_size <= dma_len)
&& dma_len <= (eaa->arg[i].get_size + offset + CACHE_LINE_SIZE - 1));
}
// add to dma get list
// FIXME (someday) the dma list is where the JS_BAD_EAH limitation comes from
while (dma_len != 0){
int n = MIN(dma_len, MFC_MAX_DMA_SIZE);
dma_get_list[gli].size = n;
dma_get_list[gli].eal = mfc_ea2l(ea_base);
dma_len -= n;
ea_base += n;
gli++;
}
}
else if (eaa->arg[i].direction == GCJD_DMA_PUT){
//
// This case is a trickier than the PUT case since we can't
// write outside of the bounds of the user provided buffer.
// We still align the buffers to 128-bytes for good performance
// in the middle portion of the xfers.
//
ea_base = ROUND_DN(eaa->arg[i].ea_addr, (gc_eaddr_t) CACHE_LINE_SIZE);
offset = eaa->arg[i].ea_addr & (CACHE_LINE_SIZE-1);
uint32_t ls_alloc_len =
ROUND_UP(eaa->arg[i].put_size + offset, CACHE_LINE_SIZE);
total_put_alloc += ls_alloc_len;
if (total_put_alloc > GC_SPU_BUFSIZE){
jd->status = JS_ARGS_TOO_LONG;
goto wrap_up;
}
ls_base = put_t;
put_t += ls_alloc_len;
eaa->arg[i].ls_addr = ls_base + offset;
if (1){
assert((mfc_ea2l(eaa->arg[i].ea_addr) & 0x7f)
== ((intptr_t)eaa->arg[i].ls_addr & 0x7f));
assert((ea_base & 0x7f) == 0);
assert(((intptr_t)ls_base & 0x7f) == 0);
}
}
else
assert(0);
}
// fire off the dma to fetch the args and wait for it to complete
mfc_getl(get_base, common_ea, dma_get_list, gli*sizeof(dma_get_list[0]), get_tag, 0, 0);
mfc_write_tag_mask(1 << get_tag); // the tag we're interested in
mfc_read_tag_status_all(); // wait for DMA to complete
// do the work
(*gc_proc_def[jd->proc_id].proc)(&jd->input, &jd->output, &jd->eaa);
// Do we have any "put" args? If so copy them out
if (jd->sys.direction_union & GCJD_DMA_PUT){
// Do the copy out using single DMA xfers. The LS ranges
// aren't generally contiguous.
bool started_dma = false;
for (unsigned int i = 0; i < eaa->nargs; i++){
if (eaa->arg[i].direction == GCJD_DMA_PUT && eaa->arg[i].put_size != 0){
started_dma = true;
gc_eaddr_t ea;
unsigned char *ls;
unsigned int len;
ea = eaa->arg[i].ea_addr;
ls = (unsigned char *) eaa->arg[i].ls_addr;
len = eaa->arg[i].put_size;
if (len < 16)
handle_slow_and_tedious_dma(ea, ls, len, put_tag);
else {
if ((ea & 0xf) != 0){
// printf("1: ea = 0x%x len = %5d\n", (int) ea, len);
// handle the "pre-multiple-of-16" portion
// do 1, 2, 4, or 8 byte xfers as required
if (ea & 0x1){ // do a 1-byte xfer
mfc_put(ls, ea, 1, put_tag, 0, 0);
ea += 1;
ls += 1;
len -= 1;
}
if (ea & 0x2){ // do a 2-byte xfer
mfc_put(ls, ea, 2, put_tag, 0, 0);
ea += 2;
ls += 2;
len -= 2;
}
if (ea & 0x4){ // do a 4-byte xfer
mfc_put(ls, ea, 4, put_tag, 0, 0);
ea += 4;
ls += 4;
len -= 4;
}
if (ea & 0x8){ // do an 8-byte xfer
mfc_put(ls, ea, 8, put_tag, 0, 0);
ea += 8;
ls += 8;
len -= 8;
}
}
if (1){
// printf("2: ea = 0x%x len = %5d\n", (int) ea, len);
assert((ea & 0xf) == 0);
assert((((intptr_t) ls) & 0xf) == 0);
}
// handle the "multiple-of-16" portion
int aligned_len = ROUND_DN(len, 16);
len = len & (16 - 1);
while (aligned_len != 0){
int dma_len = MIN(aligned_len, MFC_MAX_DMA_SIZE);
mfc_put(ls, ea, dma_len, put_tag, 0, 0);
ea += dma_len;
ls += dma_len;
aligned_len -= dma_len;
}
if (1){
// printf("3: ea = 0x%x len = %5d\n", (int)ea, len);
assert((ea & 0xf) == 0);
assert((((intptr_t) ls) & 0xf) == 0);
}
// handle "post-multiple-of-16" portion
if (len != 0){
if (len >= 8){ // do an 8-byte xfer
mfc_put(ls, ea, 8, put_tag, 0, 0);
ea += 8;
ls += 8;
len -= 8;
}
if (len >= 4){ // do a 4-byte xfer
mfc_put(ls, ea, 4, put_tag, 0, 0);
ea += 4;
ls += 4;
len -= 4;
}
if (len >= 2){ // do a 2-byte xfer
mfc_put(ls, ea, 2, put_tag, 0, 0);
ea += 2;
ls += 2;
len -= 2;
}
if (len >= 1){ // do a 1-byte xfer
mfc_put(ls, ea, 1, put_tag, 0, 0);
ea += 1;
ls += 1;
len -= 1;
}
if (1)
assert(len == 0);
}
}
}
}
if (started_dma){
put_in_progress |= PBI_MASK(pb_idx); // note it's running
gc_log_write2(GCL_SS_SYS, 0x27, put_in_progress, pb_idx);
pb_idx ^= 1; // toggle current buffer
}
}
}
}
wrap_up:; // semicolon creates null statement for C99 compliance
// Copy job descriptor back out to EA.
// (The dma will be waited on in flush_completion_info)
int tag = ci_tags + ci_idx; // use the current completion tag
mfc_put(jd, jd_ea, sizeof(*jd), tag, 0, 0);
// Tell PPE we're done with the job.
//
// We queue these up until we run out of room, or until we can send
// the info to the PPE w/o blocking. The blocking check is in
// main_loop
comp_info.job_id[comp_info.ncomplete++] = jd->sys.job_id;
if (comp_info.ncomplete == GC_CI_NJOBS){
gc_log_write0(GCL_SS_SYS, 0x28);
flush_completion_info();
}
}
static void
main_loop(void)
{
// events: 0x1X
static gc_job_desc_t jd; // static gets us proper alignment
gc_eaddr_t jd_ea;
int total_jobs = 0;
#if (USE_LLR_LOST_EVENT)
// setup events
spu_writech(SPU_WrEventMask, MFC_LLR_LOST_EVENT);
// prime the pump
while (gc_jd_queue_dequeue(spu_args.queue, &jd_ea, ci_tags + ci_idx, &jd))
process_job(jd_ea, &jd);
// we're now holding a lock-line reservation
#endif
while (1){
#if (USE_LLR_LOST_EVENT)
if (unlikely(spu_readchcnt(SPU_RdEventStat))){
//
// execute standard event handling prologue
//
int status = spu_readch(SPU_RdEventStat);
int mask = spu_readch(SPU_RdEventMask);
spu_writech(SPU_WrEventMask, mask & ~status); // disable active events
spu_writech(SPU_WrEventAck, status); // ack active events
// execute per-event actions
if (status & MFC_LLR_LOST_EVENT){
//
// We've lost a line reservation. This is most likely caused
// by somebody doing something to the queue. Go look and see
// if there's anything for us.
//
while (gc_jd_queue_dequeue(spu_args.queue, &jd_ea, ci_tags + ci_idx, &jd))
process_job(jd_ea, &jd);
}
//
// execute standard event handling epilogue
//
spu_writech(SPU_WrEventMask, mask); // restore event mask
}
#else
// try to get a job from the job queue
if (gc_jd_queue_dequeue(spu_args.queue, &jd_ea, ci_tags + ci_idx, &jd)){
total_jobs++;
gc_log_write2(GCL_SS_SYS, 0x10, jd.sys.job_id, total_jobs);
process_job(jd_ea, &jd);
gc_log_write2(GCL_SS_SYS, 0x11, jd.sys.job_id, total_jobs);
backoff_reset();
}
else
backoff_delay();
#endif
// any msgs for us?
if (unlikely(spu_readchcnt(SPU_RdInMbox))){
int msg = spu_readch(SPU_RdInMbox);
// printf("spu[%d] mbox_msg: 0x%08x\n", spu_args.spu_idx, msg);
if (MBOX_MSG_OP(msg) == OP_EXIT){
flush_completion_info();
return;
}
if (MBOX_MSG_OP(msg) == OP_GET_SPU_BUFSIZE){
spu_writech(SPU_WrOutIntrMbox, MK_MBOX_MSG(OP_SPU_BUFSIZE, GC_SPU_BUFSIZE_BASE));
}
}
// If we've got job completion info for the PPE and we can send a
// message without blocking, do it.
if (comp_info.ncomplete != 0 && spu_readchcnt(SPU_WrOutIntrMbox) != 0){
gc_log_write0(GCL_SS_SYS, 0x12);
flush_completion_info();
}
}
}
int
main(unsigned long long spe_id __attribute__((unused)),
unsigned long long argp,
unsigned long long envp __attribute__((unused)))
{
gc_sys_tag = mfc_tag_reserve(); // allocate a tag for our misc DMA operations
get_tag = mfc_tag_reserve();
ci_tags = mfc_multi_tag_reserve(2);
put_tags = mfc_multi_tag_reserve(2);
#if 0
printf("gc_sys_tag = %d\n", gc_sys_tag);
printf("get_tag = %d\n", get_tag);
printf("ci_tags = %d\n", ci_tags);
printf("put_tags = %d\n", put_tags);
#endif
// dma the args in
mfc_get(&spu_args, argp, sizeof(spu_args), gc_sys_tag, 0, 0);
mfc_write_tag_mask(1 << gc_sys_tag); // the tag we're interested in
mfc_read_tag_status_all(); // wait for DMA to complete
// initialize pointer to procedure entry table
gc_proc_def = (gc_proc_def_t *) spu_args.proc_def_ls_addr;
gc_set_seed(spu_args.spu_idx);
// initialize logging
_gc_log_init(spu_args.log);
backoff_init(); // initialize backoff parameters
main_loop();
return 0;
}
|