summaryrefslogtreecommitdiff
path: root/gcell/src/lib/general/spu/fft_1d_r2.h
blob: a51cbc341d031626e6c31152b58ec4a69a577de5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/* --------------------------------------------------------------  */
/* (C)Copyright 2001,2007,                                         */
/* International Business Machines Corporation,                    */
/* Sony Computer Entertainment, Incorporated,                      */
/* Toshiba Corporation,                                            */
/*                                                                 */
/* All Rights Reserved.                                            */
/*                                                                 */
/* Redistribution and use in source and binary forms, with or      */
/* without modification, are permitted provided that the           */
/* following conditions are met:                                   */
/*                                                                 */
/* - Redistributions of source code must retain the above copyright*/
/*   notice, this list of conditions and the following disclaimer. */
/*                                                                 */
/* - Redistributions in binary form must reproduce the above       */
/*   copyright notice, this list of conditions and the following   */
/*   disclaimer in the documentation and/or other materials        */
/*   provided with the distribution.                               */
/*                                                                 */
/* - Neither the name of IBM Corporation nor the names of its      */
/*   contributors may be used to endorse or promote products       */
/*   derived from this software without specific prior written     */
/*   permission.                                                   */
/*                                                                 */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
/* --------------------------------------------------------------  */
/* PROLOG END TAG zYx                                              */
#ifndef _FFT_1D_R2_H_
#define _FFT_1D_R2_H_	1

#include "fft_1d.h"

/* fft_1d_r2
 * ---------
 * Performs a single precision, complex Fast Fourier Transform using 
 * the DFT (Discrete Fourier Transform) with radix-2 decimation in time. 
 * The input <in> is an array of complex numbers of length (1<<log2_size)
 * entries. The result is returned in the array of complex numbers specified
 * by <out>. Note: This routine can support an in-place transformation
 * by specifying <in> and <out> to be the same array.
 *
 * This implementation utilizes the Cooley-Tukey algorithm consisting 
 * of <log2_size> stages. The basic operation is the butterfly.
 *
 *          p --------------------------> P = p + q*Wi
 *                        \      /
 *                         \    /
 *                          \  /
 *                           \/
 *                           /\
 *                          /  \
 *                         /    \
 *               ____     /      \
 *          q --| Wi |-----------------> Q = p - q*Wi
 *               ----
 *
 * This routine also requires pre-computed twiddle values, W. W is an
 * array of single precision complex numbers of length 1<<(log2_size-2) 
 * and is computed as follows:
 *
 *	for (i=0; i<n/4; i++)
 *	    W[i].real =  cos(i * 2*PI/n);
 *	    W[i].imag = -sin(i * 2*PI/n);
 *      }
 *
 * This array actually only contains the first half of the twiddle
 * factors. Due for symmetry, the second half of the twiddle factors
 * are implied and equal:
 *
 *	for (i=0; i<n/4; i++)
 *	    W[i+n/4].real =  W[i].imag =  sin(i * 2*PI/n);
 *	    W[i+n/4].imag = -W[i].real = -cos(i * 2*PI/n);
 *      }
 *
 * Further symmetry allows one to generate the twiddle factor table 
 * using half the number of trig computations as follows:
 *
 *      W[0].real = 1.0;
 *      W[0].imag = 0.0;
 *	for (i=1; i<n/4; i++)
 *	    W[i].real =  cos(i * 2*PI/n);
 *	    W[n/4 - i].imag = -W[i].real;
 *      }
 *
 * The complex numbers are packed into quadwords as follows:
 *
 *    quadword			      complex
 *  array element                   array elements
 *             -----------------------------------------------------
 *       i    |  real 2*i   |  imag 2*i  | real 2*i+1  | imag 2*i+1 | 
 *             -----------------------------------------------------
 *
 */


static __inline void _fft_1d_r2(vector float *out, vector float *in, vector float *W, int log2_size)
{
  int i, j, k;
  int stage, offset;
  int i_rev;
  int n, n_2, n_4, n_8, n_16, n_3_16;
  int w_stride, w_2stride, w_3stride, w_4stride;
  int stride, stride_2, stride_4, stride_3_4;
  vector float *W0, *W1, *W2, *W3;
  vector float *re0, *re1, *re2, *re3;
  vector float *im0, *im1, *im2, *im3;
  vector float *in0, *in1, *in2, *in3, *in4, *in5, *in6, *in7;
  vector float *out0, *out1, *out2, *out3;
  vector float tmp0, tmp1;
  vector float w0_re, w0_im, w1_re, w1_im;
  vector float w0, w1, w2, w3;
  vector float src_lo0, src_lo1, src_lo2, src_lo3;
  vector float src_hi0, src_hi1, src_hi2, src_hi3;
  vector float dst_lo0, dst_lo1, dst_lo2, dst_lo3;
  vector float dst_hi0, dst_hi1, dst_hi2, dst_hi3;
  vector float out_re_lo0, out_re_lo1, out_re_lo2, out_re_lo3;
  vector float out_im_lo0, out_im_lo1, out_im_lo2, out_im_lo3;
  vector float out_re_hi0, out_re_hi1, out_re_hi2, out_re_hi3;
  vector float out_im_hi0, out_im_hi1, out_im_hi2, out_im_hi3;
  vector float re_lo0,  re_lo1,  re_lo2,  re_lo3;
  vector float im_lo0,  im_lo1,  im_lo2,  im_lo3;
  vector float re_hi0,  re_hi1,  re_hi2,  re_hi3;
  vector float im_hi0,  im_hi1,  im_hi2,  im_hi3;
  vector float pq_lo0,  pq_lo1,  pq_lo2,  pq_lo3;
  vector float pq_hi0,  pq_hi1,  pq_hi2,  pq_hi3;
  vector float re[MAX_FFT_1D_SIZE/4], im[MAX_FFT_1D_SIZE/4];	/* real & imaginary working arrays */
  vector float ppmm = (vector float) { 1.0f,  1.0f, -1.0f, -1.0f};
  vector float pmmp = (vector float) { 1.0f, -1.0f, -1.0f,  1.0f};
  vector unsigned char reverse;
  vector unsigned char shuf_lo = (vector unsigned char) {
					     0,  1, 2, 3,  4, 5, 6, 7,
					     16,17,18,19, 20,21,22,23};
  vector unsigned char shuf_hi = (vector unsigned char) {
					     8,  9,10,11, 12,13,14,15,
					     24,25,26,27, 28,29,30,31};
  vector unsigned char shuf_0202 = (vector unsigned char) {
					       0, 1, 2, 3,  8, 9,10,11,
					       0, 1, 2, 3,  8, 9,10,11};
  vector unsigned char shuf_1313 = (vector unsigned char) {
					       4, 5, 6, 7, 12,13,14,15,
					       4, 5, 6, 7, 12,13,14,15};
  vector unsigned char shuf_0303 = (vector unsigned char) { 
					       0, 1, 2, 3, 12,13,14,15,
					       0, 1, 2, 3, 12,13,14,15};
  vector unsigned char shuf_1212 = (vector unsigned char) {
					       4, 5, 6, 7,  8, 9,10,11,
					       4, 5, 6, 7,  8, 9,10,11};
  vector unsigned char shuf_0415 = (vector unsigned char) {
					       0, 1, 2, 3, 16,17,18,19,
					       4, 5, 6, 7, 20,21,22,23};
  vector unsigned char shuf_2637 = (vector unsigned char) {
					       8, 9,10,11, 24,25,26,27,
					       12,13,14,15,28,29,30,31};
  vector unsigned char shuf_0246 = (vector unsigned char) {
					       0, 1, 2, 3,  8, 9,10,11,
					       16,17,18,19,24,25,26,27};
  vector unsigned char shuf_1357 = (vector unsigned char) {
					       4, 5, 6, 7, 12,13,14,15,
					       20,21,22,23,28,29,30,31};
  
  n = 1 << log2_size;
  n_2  = n >> 1;
  n_4  = n >> 2;
  n_8  = n >> 3;
  n_16 = n >> 4;

  n_3_16 = n_8 + n_16;

  /* Compute a byte reverse shuffle pattern to be used to produce
   * an address bit swap.
   */
  reverse = spu_or(spu_slqwbyte(spu_splats((unsigned char)0x80), log2_size),
		   spu_rlmaskqwbyte(((vec_uchar16){15,14,13,12, 11,10,9,8, 
					 	    7, 6, 5, 4,  3, 2,1,0}),
				    log2_size-16));

  /* Perform the first 3 stages of the FFT. These stages differs from 
   * other stages in that the inputs are unscrambled and the data is 
   * reformated into parallel arrays (ie, seperate real and imaginary
   * arrays). The term "unscramble" means the bit address reverse the 
   * data array. In addition, the first three stages have simple twiddle
   * weighting factors.
   *		stage 1: (1, 0)
   *            stage 2: (1, 0) and (0, -1)
   *		stage 3: (1, 0), (0.707, -0.707), (0, -1), (-0.707, -0.707)
   *
   * The arrays are processed as two halves, simultaneously. The lo (first 
   * half) and hi (second half). This is done because the scramble 
   * shares source value between each half of the output arrays.
   */
  i = 0;
  i_rev = 0;

  in0 = in;
  in1 = in + n_8;
  in2 = in + n_16;
  in3 = in + n_3_16;  

  in4 = in  + n_4;
  in5 = in1 + n_4;
  in6 = in2 + n_4;
  in7 = in3 + n_4;

  re0 = re;
  re1 = re + n_8;
  im0 = im;
  im1 = im + n_8;

  w0_re = (vector float) { 1.0f,  INV_SQRT_2,  0.0f, -INV_SQRT_2};
  w0_im = (vector float) { 0.0f, -INV_SQRT_2, -1.0f, -INV_SQRT_2};
      
  do {
    src_lo0 = in0[i_rev];
    src_lo1 = in1[i_rev];
    src_lo2 = in2[i_rev];
    src_lo3 = in3[i_rev];

    src_hi0 = in4[i_rev];
    src_hi1 = in5[i_rev];
    src_hi2 = in6[i_rev];
    src_hi3 = in7[i_rev];

    /* Perform scramble.
     */
    dst_lo0 = spu_shuffle(src_lo0, src_hi0, shuf_lo);
    dst_hi0 = spu_shuffle(src_lo0, src_hi0, shuf_hi);
    dst_lo1 = spu_shuffle(src_lo1, src_hi1, shuf_lo);
    dst_hi1 = spu_shuffle(src_lo1, src_hi1, shuf_hi);
    dst_lo2 = spu_shuffle(src_lo2, src_hi2, shuf_lo);
    dst_hi2 = spu_shuffle(src_lo2, src_hi2, shuf_hi);
    dst_lo3 = spu_shuffle(src_lo3, src_hi3, shuf_lo);
    dst_hi3 = spu_shuffle(src_lo3, src_hi3, shuf_hi);

    /* Perform the stage 1 butterfly. The multiplier constant, ppmm,
     * is used to control the sign of the operands since a single
     * quadword contains both of P and Q valule of the butterfly.
     */
    pq_lo0 = spu_madd(ppmm, dst_lo0, spu_rlqwbyte(dst_lo0, 8));
    pq_hi0 = spu_madd(ppmm, dst_hi0, spu_rlqwbyte(dst_hi0, 8));
    pq_lo1 = spu_madd(ppmm, dst_lo1, spu_rlqwbyte(dst_lo1, 8));
    pq_hi1 = spu_madd(ppmm, dst_hi1, spu_rlqwbyte(dst_hi1, 8));
    pq_lo2 = spu_madd(ppmm, dst_lo2, spu_rlqwbyte(dst_lo2, 8));
    pq_hi2 = spu_madd(ppmm, dst_hi2, spu_rlqwbyte(dst_hi2, 8));
    pq_lo3 = spu_madd(ppmm, dst_lo3, spu_rlqwbyte(dst_lo3, 8));
    pq_hi3 = spu_madd(ppmm, dst_hi3, spu_rlqwbyte(dst_hi3, 8));

    /* Perfrom the stage 2 butterfly. For this stage, the 
     * inputs pq are still interleaved (p.real, p.imag, q.real, 
     * q.imag), so we must first re-order the data into 
     * parallel arrays as well as perform the reorder 
     * associated with the twiddle W[n/4], which equals
     * (0, -1). 
     *
     *	ie. (A, B) * (0, -1) => (B, -A)
     */
    re_lo0 = spu_madd(ppmm, 
		      spu_shuffle(pq_lo1, pq_lo1, shuf_0303),
		      spu_shuffle(pq_lo0, pq_lo0, shuf_0202));
    im_lo0 = spu_madd(pmmp, 
		      spu_shuffle(pq_lo1, pq_lo1, shuf_1212),
		      spu_shuffle(pq_lo0, pq_lo0, shuf_1313));

    re_lo1 = spu_madd(ppmm, 
		      spu_shuffle(pq_lo3, pq_lo3, shuf_0303),
		      spu_shuffle(pq_lo2, pq_lo2, shuf_0202));
    im_lo1 = spu_madd(pmmp, 
		      spu_shuffle(pq_lo3, pq_lo3, shuf_1212),
		      spu_shuffle(pq_lo2, pq_lo2, shuf_1313));


    re_hi0 = spu_madd(ppmm, 
		      spu_shuffle(pq_hi1, pq_hi1, shuf_0303),
		      spu_shuffle(pq_hi0, pq_hi0, shuf_0202));
    im_hi0 = spu_madd(pmmp, 
		       spu_shuffle(pq_hi1, pq_hi1, shuf_1212),
		       spu_shuffle(pq_hi0, pq_hi0, shuf_1313));

    re_hi1 = spu_madd(ppmm, 
		      spu_shuffle(pq_hi3, pq_hi3, shuf_0303),
		      spu_shuffle(pq_hi2, pq_hi2, shuf_0202));
    im_hi1 = spu_madd(pmmp, 
		      spu_shuffle(pq_hi3, pq_hi3, shuf_1212),
		      spu_shuffle(pq_hi2, pq_hi2, shuf_1313));


    /* Perform stage 3 butterfly.
     */
    FFT_1D_BUTTERFLY(re0[0], im0[0], re0[1], im0[1], re_lo0, im_lo0, re_lo1, im_lo1, w0_re, w0_im);
    FFT_1D_BUTTERFLY(re1[0], im1[0], re1[1], im1[1], re_hi0, im_hi0, re_hi1, im_hi1, w0_re, w0_im);

    re0 += 2;
    re1 += 2;
    im0 += 2; 
    im1 += 2;
    
    i += 8;
    i_rev = BIT_SWAP(i, reverse) / 2;
  } while (i < n_2);

  /* Process stages 4 to log2_size-2
   */
  for (stage=4, stride=4; stage<log2_size-1; stage++, stride += stride) {
    w_stride  = n_2 >> stage;
    w_2stride = n   >> stage;
    w_3stride = w_stride +  w_2stride;
    w_4stride = w_2stride + w_2stride;

    W0 = W;
    W1 = W + w_stride;
    W2 = W + w_2stride;
    W3 = W + w_3stride;

    stride_2 = stride >> 1;
    stride_4 = stride >> 2;
    stride_3_4 = stride_2 + stride_4;

    re0 = re;              im0 = im;
    re1 = re + stride_2;   im1 = im + stride_2;   
    re2 = re + stride_4;   im2 = im + stride_4;   
    re3 = re + stride_3_4; im3 = im + stride_3_4;   

    for (i=0, offset=0; i<stride_4; i++, offset += w_4stride) {
      /* Compute the twiddle factors
       */
      w0 = W0[offset];
      w1 = W1[offset];
      w2 = W2[offset];
      w3 = W3[offset];

      tmp0 = spu_shuffle(w0, w2, shuf_0415);
      tmp1 = spu_shuffle(w1, w3, shuf_0415);

      w0_re = spu_shuffle(tmp0, tmp1, shuf_0415);
      w0_im = spu_shuffle(tmp0, tmp1, shuf_2637);

      j = i;
      k = i + stride;
      do {
	re_lo0 = re0[j]; im_lo0 = im0[j];
	re_lo1 = re1[j]; im_lo1 = im1[j];

	re_hi0 = re2[j]; im_hi0 = im2[j];
	re_hi1 = re3[j]; im_hi1 = im3[j];

	re_lo2 = re0[k]; im_lo2 = im0[k];
	re_lo3 = re1[k]; im_lo3 = im1[k];

	re_hi2 = re2[k]; im_hi2 = im2[k];
	re_hi3 = re3[k]; im_hi3 = im3[k];

	FFT_1D_BUTTERFLY   (re0[j], im0[j], re1[j], im1[j], re_lo0, im_lo0, re_lo1, im_lo1, w0_re, w0_im);
	FFT_1D_BUTTERFLY_HI(re2[j], im2[j], re3[j], im3[j], re_hi0, im_hi0, re_hi1, im_hi1, w0_re, w0_im);

	FFT_1D_BUTTERFLY   (re0[k], im0[k], re1[k], im1[k], re_lo2, im_lo2, re_lo3, im_lo3, w0_re, w0_im);
	FFT_1D_BUTTERFLY_HI(re2[k], im2[k], re3[k], im3[k], re_hi2, im_hi2, re_hi3, im_hi3, w0_re, w0_im);

	j += 2 * stride;
	k += 2 * stride;
      } while (j < n_4);
    }
  }

  /* Process stage log2_size-1. This is identical to the stage processing above
   * except for this stage the inner loop is only executed once so it is removed
   * entirely.
   */
  w_stride  = n_2 >> stage;
  w_2stride = n   >> stage;
  w_3stride = w_stride +  w_2stride;
  w_4stride = w_2stride + w_2stride;

  stride_2 = stride >> 1;
  stride_4 = stride >> 2;

  stride_3_4 = stride_2 + stride_4;

  re0 = re;              im0 = im;
  re1 = re + stride_2;   im1 = im + stride_2;   
  re2 = re + stride_4;   im2 = im + stride_4;   
  re3 = re + stride_3_4; im3 = im + stride_3_4;   

  for (i=0, offset=0; i<stride_4; i++, offset += w_4stride) {
    /* Compute the twiddle factors
     */
    w0 = W[offset];
    w1 = W[offset + w_stride];
    w2 = W[offset + w_2stride];
    w3 = W[offset + w_3stride];

    tmp0 = spu_shuffle(w0, w2, shuf_0415);
    tmp1 = spu_shuffle(w1, w3, shuf_0415);

    w0_re = spu_shuffle(tmp0, tmp1, shuf_0415);
    w0_im = spu_shuffle(tmp0, tmp1, shuf_2637);

    j = i;
    k = i + stride;

    re_lo0 = re0[j]; im_lo0 = im0[j];
    re_lo1 = re1[j]; im_lo1 = im1[j];

    re_hi0 = re2[j]; im_hi0 = im2[j];
    re_hi1 = re3[j]; im_hi1 = im3[j];

    re_lo2 = re0[k]; im_lo2 = im0[k];
    re_lo3 = re1[k]; im_lo3 = im1[k];

    re_hi2 = re2[k]; im_hi2 = im2[k];
    re_hi3 = re3[k]; im_hi3 = im3[k];
      
    FFT_1D_BUTTERFLY   (re0[j], im0[j], re1[j], im1[j], re_lo0, im_lo0, re_lo1, im_lo1, w0_re, w0_im);
    FFT_1D_BUTTERFLY_HI(re2[j], im2[j], re3[j], im3[j], re_hi0, im_hi0, re_hi1, im_hi1, w0_re, w0_im);

    FFT_1D_BUTTERFLY   (re0[k], im0[k], re1[k], im1[k], re_lo2, im_lo2, re_lo3, im_lo3, w0_re, w0_im);
    FFT_1D_BUTTERFLY_HI(re2[k], im2[k], re3[k], im3[k], re_hi2, im_hi2, re_hi3, im_hi3, w0_re, w0_im);
  }


  /* Process the final stage (stage log2_size). For this stage, 
   * reformat the data from parallel arrays back into 
   * interleaved arrays,storing the result into <in>.
   *
   * This loop has been manually unrolled by 2 to improve 
   * dual issue rates and reduce stalls. This unrolling
   * forces a minimum FFT size of 32.
   */
  re0 = re;
  re1 = re + n_8;
  re2 = re + n_16;
  re3 = re + n_3_16;

  im0 = im;
  im1 = im + n_8;
  im2 = im + n_16;
  im3 = im + n_3_16;

  out0 = out;
  out1 = out + n_4;
  out2 = out + n_8;
  out3 = out1 + n_8;

  i = n_16;

  do {
    /* Fetch the twiddle factors
     */
    w0 = W[0];
    w1 = W[1];
    w2 = W[2];
    w3 = W[3];

    W += 4;

    w0_re = spu_shuffle(w0, w1, shuf_0246);
    w0_im = spu_shuffle(w0, w1, shuf_1357);
    w1_re = spu_shuffle(w2, w3, shuf_0246);
    w1_im = spu_shuffle(w2, w3, shuf_1357);

    /* Fetch the butterfly inputs, reals and imaginaries
     */
    re_lo0 = re0[0]; im_lo0 = im0[0];
    re_lo1 = re1[0]; im_lo1 = im1[0];
    re_lo2 = re0[1]; im_lo2 = im0[1];
    re_lo3 = re1[1]; im_lo3 = im1[1];

    re_hi0 = re2[0]; im_hi0 = im2[0];
    re_hi1 = re3[0]; im_hi1 = im3[0];
    re_hi2 = re2[1]; im_hi2 = im2[1];
    re_hi3 = re3[1]; im_hi3 = im3[1];

    re0 += 2; im0 += 2;
    re1 += 2; im1 += 2;
    re2 += 2; im2 += 2;
    re3 += 2; im3 += 2;

    /* Perform the butterflys
     */
    FFT_1D_BUTTERFLY   (out_re_lo0, out_im_lo0, out_re_lo1, out_im_lo1, re_lo0, im_lo0, re_lo1, im_lo1, w0_re, w0_im);
    FFT_1D_BUTTERFLY   (out_re_lo2, out_im_lo2, out_re_lo3, out_im_lo3, re_lo2, im_lo2, re_lo3, im_lo3, w1_re, w1_im);

    FFT_1D_BUTTERFLY_HI(out_re_hi0, out_im_hi0, out_re_hi1, out_im_hi1, re_hi0, im_hi0, re_hi1, im_hi1, w0_re, w0_im);
    FFT_1D_BUTTERFLY_HI(out_re_hi2, out_im_hi2, out_re_hi3, out_im_hi3, re_hi2, im_hi2, re_hi3, im_hi3, w1_re, w1_im);

    /* Interleave the results and store them into the output buffers (ie,
     * the original input buffers.
     */
    out0[0] = spu_shuffle(out_re_lo0, out_im_lo0, shuf_0415);
    out0[1] = spu_shuffle(out_re_lo0, out_im_lo0, shuf_2637);
    out0[2] = spu_shuffle(out_re_lo2, out_im_lo2, shuf_0415);
    out0[3] = spu_shuffle(out_re_lo2, out_im_lo2, shuf_2637);

    out1[0] = spu_shuffle(out_re_lo1, out_im_lo1, shuf_0415);
    out1[1] = spu_shuffle(out_re_lo1, out_im_lo1, shuf_2637);
    out1[2] = spu_shuffle(out_re_lo3, out_im_lo3, shuf_0415);
    out1[3] = spu_shuffle(out_re_lo3, out_im_lo3, shuf_2637);

    out2[0] = spu_shuffle(out_re_hi0, out_im_hi0, shuf_0415);
    out2[1] = spu_shuffle(out_re_hi0, out_im_hi0, shuf_2637);
    out2[2] = spu_shuffle(out_re_hi2, out_im_hi2, shuf_0415);
    out2[3] = spu_shuffle(out_re_hi2, out_im_hi2, shuf_2637);

    out3[0] = spu_shuffle(out_re_hi1, out_im_hi1, shuf_0415);
    out3[1] = spu_shuffle(out_re_hi1, out_im_hi1, shuf_2637);
    out3[2] = spu_shuffle(out_re_hi3, out_im_hi3, shuf_0415);
    out3[3] = spu_shuffle(out_re_hi3, out_im_hi3, shuf_2637);

    out0 += 4;
    out1 += 4;
    out2 += 4;
    out3 += 4;

    i -= 2;
  } while (i);
}

#endif /* _FFT_1D_R2_H_ */