summaryrefslogtreecommitdiff
path: root/gr-wxgui/src/python/common.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-wxgui/src/python/common.py')
-rw-r--r--gr-wxgui/src/python/common.py252
1 files changed, 252 insertions, 0 deletions
diff --git a/gr-wxgui/src/python/common.py b/gr-wxgui/src/python/common.py
new file mode 100644
index 000000000..1410d29df
--- /dev/null
+++ b/gr-wxgui/src/python/common.py
@@ -0,0 +1,252 @@
+#
+# Copyright 2008, 2009 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+##################################################
+# conditional disconnections of wx flow graph
+##################################################
+import wx
+from gnuradio import gr
+
+RUN_ALWAYS = gr.prefs().get_bool ('wxgui', 'run_always', False)
+
+class wxgui_hb(object):
+ """
+ The wxgui hier block helper/wrapper class:
+ A hier block should inherit from this class to make use of the wxgui connect method.
+ To use, call wxgui_connect in place of regular connect; self.win must be defined.
+ The implementation will conditionally enable the copy block after the source (self).
+ This condition depends on weather or not the window is visible with the parent notebooks.
+ This condition will be re-checked on every ui update event.
+ """
+
+ def wxgui_connect(self, *points):
+ """
+ Use wxgui connect when the first point is the self source of the hb.
+ The win property of this object should be set to the wx window.
+ When this method tries to connect self to the next point,
+ it will conditionally make this connection based on the visibility state.
+ All other points will be connected normally.
+ """
+ try:
+ assert points[0] == self or points[0][0] == self
+ copy = gr.copy(self._hb.input_signature().sizeof_stream_item(0))
+ handler = self._handler_factory(copy.set_enabled)
+ if RUN_ALWAYS == False:
+ handler(False) #initially disable the copy block
+ else:
+ handler(True) #initially enable the copy block
+ self._bind_to_visible_event(win=self.win, handler=handler)
+ points = list(points)
+ points.insert(1, copy) #insert the copy block into the chain
+ except (AssertionError, IndexError): pass
+ self.connect(*points) #actually connect the blocks
+
+ @staticmethod
+ def _handler_factory(handler):
+ """
+ Create a function that will cache the visibility flag,
+ and only call the handler when that flag changes.
+ @param handler the function to call on a change
+ @return a function of 1 argument
+ """
+ cache = [None]
+ def callback(visible):
+ if cache[0] == visible: return
+ cache[0] = visible
+ #print visible, handler
+ if RUN_ALWAYS == False:
+ handler(visible)
+ else:
+ handler(True)
+ return callback
+
+ @staticmethod
+ def _bind_to_visible_event(win, handler):
+ """
+ Bind a handler to a window when its visibility changes.
+ Specifically, call the handler when the window visibility changes.
+ This condition is checked on every update ui event.
+ @param win the wx window
+ @param handler a function of 1 param
+ """
+ #is the window visible in the hierarchy
+ def is_wx_window_visible(my_win):
+ while True:
+ parent = my_win.GetParent()
+ if not parent: return True #reached the top of the hierarchy
+ #if we are hidden, then finish, otherwise keep traversing up
+ if isinstance(parent, wx.Notebook) and parent.GetCurrentPage() != my_win: return False
+ my_win = parent
+ #call the handler, the arg is shown or not
+ def handler_factory(my_win, my_handler):
+ def callback(evt):
+ my_handler(is_wx_window_visible(my_win))
+ evt.Skip() #skip so all bound handlers are called
+ return callback
+ handler = handler_factory(win, handler)
+ #bind the handler to all the parent notebooks
+ win.Bind(wx.EVT_UPDATE_UI, handler)
+
+##################################################
+# Helpful Functions
+##################################################
+
+#A macro to apply an index to a key
+index_key = lambda key, i: "%s_%d"%(key, i+1)
+
+def _register_access_method(destination, controller, key):
+ """
+ Helper function for register access methods.
+ This helper creates distinct set and get methods for each key
+ and adds them to the destination object.
+ """
+ def set(value): controller[key] = value
+ setattr(destination, 'set_'+key, set)
+ def get(): return controller[key]
+ setattr(destination, 'get_'+key, get)
+
+def register_access_methods(destination, controller):
+ """
+ Register setter and getter functions in the destination object for all keys in the controller.
+ @param destination the object to get new setter and getter methods
+ @param controller the pubsub controller
+ """
+ for key in controller.keys(): _register_access_method(destination, controller, key)
+
+##################################################
+# Input Watcher Thread
+##################################################
+from gnuradio import gru
+
+class input_watcher(gru.msgq_runner):
+ """
+ Input watcher thread runs forever.
+ Read messages from the message queue.
+ Forward messages to the message handler.
+ """
+ def __init__ (self, msgq, controller, msg_key, arg1_key='', arg2_key=''):
+ self._controller = controller
+ self._msg_key = msg_key
+ self._arg1_key = arg1_key
+ self._arg2_key = arg2_key
+ gru.msgq_runner.__init__(self, msgq, self.handle_msg)
+
+ def handle_msg(self, msg):
+ if self._arg1_key: self._controller[self._arg1_key] = msg.arg1()
+ if self._arg2_key: self._controller[self._arg2_key] = msg.arg2()
+ self._controller[self._msg_key] = msg.to_string()
+
+
+##################################################
+# Shared Functions
+##################################################
+import numpy
+import math
+
+def get_exp(num):
+ """
+ Get the exponent of the number in base 10.
+ @param num the floating point number
+ @return the exponent as an integer
+ """
+ if num == 0: return 0
+ return int(math.floor(math.log10(abs(num))))
+
+def get_clean_num(num):
+ """
+ Get the closest clean number match to num with bases 1, 2, 5.
+ @param num the number
+ @return the closest number
+ """
+ if num == 0: return 0
+ sign = num > 0 and 1 or -1
+ exp = get_exp(num)
+ nums = numpy.array((1, 2, 5, 10))*(10**exp)
+ return sign*nums[numpy.argmin(numpy.abs(nums - abs(num)))]
+
+def get_clean_incr(num):
+ """
+ Get the next higher clean number with bases 1, 2, 5.
+ @param num the number
+ @return the next higher number
+ """
+ num = get_clean_num(num)
+ exp = get_exp(num)
+ coeff = int(round(num/10**exp))
+ return {
+ -5: -2,
+ -2: -1,
+ -1: -.5,
+ 1: 2,
+ 2: 5,
+ 5: 10,
+ }[coeff]*(10**exp)
+
+def get_clean_decr(num):
+ """
+ Get the next lower clean number with bases 1, 2, 5.
+ @param num the number
+ @return the next lower number
+ """
+ num = get_clean_num(num)
+ exp = get_exp(num)
+ coeff = int(round(num/10**exp))
+ return {
+ -5: -10,
+ -2: -5,
+ -1: -2,
+ 1: .5,
+ 2: 1,
+ 5: 2,
+ }[coeff]*(10**exp)
+
+def get_min_max(samples):
+ """
+ Get the minimum and maximum bounds for an array of samples.
+ @param samples the array of real values
+ @return a tuple of min, max
+ """
+ factor = 2.0
+ mean = numpy.average(samples)
+ std = numpy.std(samples)
+ fft = numpy.abs(numpy.fft.fft(samples - mean))
+ envelope = 2*numpy.max(fft)/len(samples)
+ ampl = max(std, envelope) or 0.1
+ return mean - factor*ampl, mean + factor*ampl
+
+def get_min_max_fft(fft_samps):
+ """
+ Get the minimum and maximum bounds for an array of fft samples.
+ @param samples the array of real values
+ @return a tuple of min, max
+ """
+ #get the peak level (max of the samples)
+ peak_level = numpy.max(fft_samps)
+ #separate noise samples
+ noise_samps = numpy.sort(fft_samps)[:len(fft_samps)/2]
+ #get the noise floor
+ noise_floor = numpy.average(noise_samps)
+ #get the noise deviation
+ noise_dev = numpy.std(noise_samps)
+ #determine the maximum and minimum levels
+ max_level = peak_level
+ min_level = noise_floor - abs(2*noise_dev)
+ return min_level, max_level