diff options
Diffstat (limited to 'gr-vocoder')
-rw-r--r-- | gr-vocoder/lib/Makefile.am | 3 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/.gitignore | 8 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/Makefile.am | 27 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/README | 94 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/decode.c | 113 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/encode.c | 119 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/g711.c | 283 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/g721.c | 173 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/g723_24.c | 158 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/g723_40.c | 178 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/g72x.c | 576 | ||||
-rw-r--r-- | gr-vocoder/lib/g7xx/g72x.h | 156 |
12 files changed, 1887 insertions, 1 deletions
diff --git a/gr-vocoder/lib/Makefile.am b/gr-vocoder/lib/Makefile.am index 198371f47..44ad67756 100644 --- a/gr-vocoder/lib/Makefile.am +++ b/gr-vocoder/lib/Makefile.am @@ -21,7 +21,7 @@ include $(top_srcdir)/Makefile.common -SUBDIRS = codec2 gsm . +SUBDIRS = codec2 g7xx gsm . AM_CPPFLAGS = $(STD_DEFINES_AND_INCLUDES) $(PYTHON_CPPFLAGS) $(WITH_INCLUDES) \ -I$(top_srcdir)/gr-vocoder/include @@ -39,6 +39,7 @@ libgnuradio_vocoder_la_SOURCES = \ libgnuradio_vocoder_la_LIBADD = \ $(GNURADIO_CORE_LA) \ codec2/libcodec2.la \ + g7xx/libg7xx.la \ gsm/libgsm.la libgnuradio_vocoder_la_LDFLAGS = $(NO_UNDEFINED) $(LTVERSIONFLAGS) diff --git a/gr-vocoder/lib/g7xx/.gitignore b/gr-vocoder/lib/g7xx/.gitignore new file mode 100644 index 000000000..a02b6ff73 --- /dev/null +++ b/gr-vocoder/lib/g7xx/.gitignore @@ -0,0 +1,8 @@ +/Makefile +/Makefile.in +/.la +/.lo +/.deps +/.libs +/*.la +/*.lo diff --git a/gr-vocoder/lib/g7xx/Makefile.am b/gr-vocoder/lib/g7xx/Makefile.am new file mode 100644 index 000000000..929fd23ba --- /dev/null +++ b/gr-vocoder/lib/g7xx/Makefile.am @@ -0,0 +1,27 @@ +# +# Copyright 2001,2011 Free Software Foundation, Inc. +# +# This file is part of GNU Radio +# +# GNU Radio is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3, or (at your option) +# any later version. +# +# GNU Radio is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with GNU Radio; see the file COPYING. If not, write to +# the Free Software Foundation, Inc., 51 Franklin Street, +# Boston, MA 02110-1301, USA. +# + +include $(top_srcdir)/Makefile.common + +noinst_LTLIBRARIES = libg7xx.la +libg7xx_la_SOURCES = g711.c g72x.c g721.c g723_24.c g723_40.c g72x.h + +EXTRA_DIST += encode.c decode.c diff --git a/gr-vocoder/lib/g7xx/README b/gr-vocoder/lib/g7xx/README new file mode 100644 index 000000000..23b0e7dd5 --- /dev/null +++ b/gr-vocoder/lib/g7xx/README @@ -0,0 +1,94 @@ +The files in this directory comprise ANSI-C language reference implementations +of the CCITT (International Telegraph and Telephone Consultative Committee) +G.711, G.721 and G.723 voice compressions. They have been tested on Sun +SPARCstations and passed 82 out of 84 test vectors published by CCITT +(Dec. 20, 1988) for G.721 and G.723. [The two remaining test vectors, +which the G.721 decoder implementation for u-law samples did not pass, +may be in error because they are identical to two other vectors for G.723_40.] + +This source code is released by Sun Microsystems, Inc. to the public domain. +Please give your acknowledgement in product literature if this code is used +in your product implementation. + +Sun Microsystems supports some CCITT audio formats in Solaris 2.0 system +software. However, Sun's implementations have been optimized for higher +performance on SPARCstations. + + +The source files for CCITT conversion routines in this directory are: + + g72x.h header file for g721.c, g723_24.c and g723_40.c + g711.c CCITT G.711 u-law and A-law compression + g72x.c common denominator of G.721 and G.723 ADPCM codes + g721.c CCITT G.721 32Kbps ADPCM coder (with g72x.c) + g723_24.c CCITT G.723 24Kbps ADPCM coder (with g72x.c) + g723_40.c CCITT G.723 40Kbps ADPCM coder (with g72x.c) + + +Simple conversions between u-law, A-law, and 16-bit linear PCM are invoked +as follows: + + unsigned char ucode, acode; + short pcm_val; + + ucode = linear2ulaw(pcm_val); + ucode = alaw2ulaw(acode); + + acode = linear2alaw(pcm_val); + acode = ulaw2alaw(ucode); + + pcm_val = ulaw2linear(ucode); + pcm_val = alaw2linear(acode); + + +The other CCITT compression routines are invoked as follows: + + #include "g72x.h" + + struct g72x_state state; + int sample, code; + + g72x_init_state(&state); + code = {g721,g723_24,g723_40}_encoder(sample, coding, &state); + sample = {g721,g723_24,g723_40}_decoder(code, coding, &state); + +where + coding = AUDIO_ENCODING_ULAW for 8-bit u-law samples + AUDIO_ENCODING_ALAW for 8-bit A-law samples + AUDIO_ENCODING_LINEAR for 16-bit linear PCM samples + + + +This directory also includes the following sample programs: + + encode.c CCITT ADPCM encoder + decode.c CCITT ADPCM decoder + Makefile makefile for the sample programs + + +The sample programs contain examples of how to call the various compression +routines and pack/unpack the bits. The sample programs read byte streams from +stdin and write to stdout. The input/output data is raw data (no file header +or other identifying information is embedded). The sample programs are +invoked as follows: + + encode [-3|4|5] [-a|u|l] <infile >outfile + decode [-3|4|5] [-a|u|l] <infile >outfile +where: + -3 encode to (decode from) G.723 24kbps (3-bit) data + -4 encode to (decode from) G.721 32kbps (4-bit) data [the default] + -5 encode to (decode from) G.723 40kbps (5-bit) data + -a encode from (decode to) A-law data + -u encode from (decode to) u-law data [the default] + -l encode from (decode to) 16-bit linear data + +Examples: + # Read 16-bit linear and output G.721 + encode -4 -l <pcmfile >g721file + + # Read 40Kbps G.723 and output A-law + decode -5 -a <g723file >alawfile + + # Compress and then decompress u-law data using 24Kbps G.723 + encode -3 <ulawin | deoced -3 >ulawout + diff --git a/gr-vocoder/lib/g7xx/decode.c b/gr-vocoder/lib/g7xx/decode.c new file mode 100644 index 000000000..cf8c739c5 --- /dev/null +++ b/gr-vocoder/lib/g7xx/decode.c @@ -0,0 +1,113 @@ +/* + * decode.c + * + * CCITT ADPCM decoder + * + * Usage : decode [-3|4|5] [-a|u|l] < infile > outfile + */ +#include <stdio.h> +#include "g72x.h" + + +/* + * Unpack input codes and pass them back as bytes. + * Returns 1 if there is residual input, returns -1 if eof, else returns 0. + */ +int +unpack_input( + unsigned char *code, + int bits) +{ + static unsigned int in_buffer = 0; + static int in_bits = 0; + unsigned char in_byte; + + if (in_bits < bits) { + if (fread(&in_byte, sizeof (char), 1, stdin) != 1) { + *code = 0; + return (-1); + } + in_buffer |= (in_byte << in_bits); + in_bits += 8; + } + *code = in_buffer & ((1 << bits) - 1); + in_buffer >>= bits; + in_bits -= bits; + return (in_bits > 0); +} + + +main( + int argc, + char **argv) +{ + short sample; + unsigned char code; + int n; + struct g72x_state state; + int out_coding; + int out_size; + int (*dec_routine)(); + int dec_bits; + + g72x_init_state(&state); + out_coding = AUDIO_ENCODING_ULAW; + out_size = sizeof (char); + dec_routine = g721_decoder; + dec_bits = 4; + + /* Process encoding argument, if any */ + while ((argc > 1) && (argv[1][0] == '-')) { + switch (argv[1][1]) { + case '3': + dec_routine = g723_24_decoder; + dec_bits = 3; + break; + case '4': + dec_routine = g721_decoder; + dec_bits = 4; + break; + case '5': + dec_routine = g723_40_decoder; + dec_bits = 5; + break; + case 'u': + out_coding = AUDIO_ENCODING_ULAW; + out_size = sizeof (char); + break; + case 'a': + out_coding = AUDIO_ENCODING_ALAW; + out_size = sizeof (char); + break; + case 'l': + out_coding = AUDIO_ENCODING_LINEAR; + out_size = sizeof (short); + break; + default: +fprintf(stderr, "CCITT ADPCM Decoder -- usage:\n"); +fprintf(stderr, "\tdecode [-3|4|5] [-a|u|l] < infile > outfile\n"); +fprintf(stderr, "where:\n"); +fprintf(stderr, "\t-3\tProcess G.723 24kbps (3-bit) input data\n"); +fprintf(stderr, "\t-4\tProcess G.721 32kbps (4-bit) input data [default]\n"); +fprintf(stderr, "\t-5\tProcess G.723 40kbps (5-bit) input data\n"); +fprintf(stderr, "\t-a\tGenerate 8-bit A-law data\n"); +fprintf(stderr, "\t-u\tGenerate 8-bit u-law data [default]\n"); +fprintf(stderr, "\t-l\tGenerate 16-bit linear PCM data\n"); + exit(1); + } + argc--; + argv++; + } + + /* Read and unpack input codes and process them */ + while (unpack_input(&code, dec_bits) >= 0) { + sample = (*dec_routine)(code, out_coding, &state); + if (out_size == 2) { + fwrite(&sample, out_size, 1, stdout); + } else { + code = (unsigned char)sample; + fwrite(&code, out_size, 1, stdout); + } + } + fclose(stdout); +} diff --git a/gr-vocoder/lib/g7xx/encode.c b/gr-vocoder/lib/g7xx/encode.c new file mode 100644 index 000000000..e74482869 --- /dev/null +++ b/gr-vocoder/lib/g7xx/encode.c @@ -0,0 +1,119 @@ +/* + * encode.c + * + * CCITT ADPCM encoder + * + * Usage : encode [-3|4|5] [-a|u|l] < infile > outfile + */ +#include <stdio.h> +#include "g72x.h" + + +/* + * Pack output codes into bytes and write them to stdout. + * Returns 1 if there is residual output, else returns 0. + */ +int +pack_output( + unsigned code, + int bits) +{ + static unsigned int out_buffer = 0; + static int out_bits = 0; + unsigned char out_byte; + + out_buffer |= (code << out_bits); + out_bits += bits; + if (out_bits >= 8) { + out_byte = out_buffer & 0xff; + out_bits -= 8; + out_buffer >>= 8; + fwrite(&out_byte, sizeof (char), 1, stdout); + } + return (out_bits > 0); +} + + +main( + int argc, + char **argv) +{ + struct g72x_state state; + unsigned char sample_char; + short sample_short; + unsigned char code; + int resid; + int in_coding; + int in_size; + unsigned *in_buf; + int (*enc_routine)(); + int enc_bits; + + g72x_init_state(&state); + + /* Set defaults to u-law input, G.721 output */ + in_coding = AUDIO_ENCODING_ULAW; + in_size = sizeof (char); + in_buf = (unsigned *)&sample_char; + enc_routine = g721_encoder; + enc_bits = 4; + + /* Process encoding argument, if any */ + while ((argc > 1) && (argv[1][0] == '-')) { + switch (argv[1][1]) { + case '3': + enc_routine = g723_24_encoder; + enc_bits = 3; + break; + case '4': + enc_routine = g721_encoder; + enc_bits = 4; + break; + case '5': + enc_routine = g723_40_encoder; + enc_bits = 5; + break; + case 'u': + in_coding = AUDIO_ENCODING_ULAW; + in_size = sizeof (char); + in_buf = (unsigned *)&sample_char; + break; + case 'a': + in_coding = AUDIO_ENCODING_ALAW; + in_size = sizeof (char); + in_buf = (unsigned *)&sample_char; + break; + case 'l': + in_coding = AUDIO_ENCODING_LINEAR; + in_size = sizeof (short); + in_buf = (unsigned *)&sample_short; + break; + default: +fprintf(stderr, "CCITT ADPCM Encoder -- usage:\n"); +fprintf(stderr, "\tencode [-3|4|5] [-a|u|l] < infile > outfile\n"); +fprintf(stderr, "where:\n"); +fprintf(stderr, "\t-3\tGenerate G.723 24kbps (3-bit) data\n"); +fprintf(stderr, "\t-4\tGenerate G.721 32kbps (4-bit) data [default]\n"); +fprintf(stderr, "\t-5\tGenerate G.723 40kbps (5-bit) data\n"); +fprintf(stderr, "\t-a\tProcess 8-bit A-law input data\n"); +fprintf(stderr, "\t-u\tProcess 8-bit u-law input data [default]\n"); +fprintf(stderr, "\t-l\tProcess 16-bit linear PCM input data\n"); + exit(1); + } + argc--; + argv++; + } + + /* Read input file and process */ + while (fread(in_buf, in_size, 1, stdin) == 1) { + code = (*enc_routine)(in_size == 2 ? sample_short : sample_char, + in_coding, &state); + resid = pack_output(code, enc_bits); + } + + /* Write zero codes until all residual codes are written out */ + while (resid) { + resid = pack_output(0, enc_bits); + } + fclose(stdout); +} diff --git a/gr-vocoder/lib/g7xx/g711.c b/gr-vocoder/lib/g7xx/g711.c new file mode 100644 index 000000000..d4d60a5c2 --- /dev/null +++ b/gr-vocoder/lib/g7xx/g711.c @@ -0,0 +1,283 @@ +/* + * This source code is a product of Sun Microsystems, Inc. and is provided + * for unrestricted use. Users may copy or modify this source code without + * charge. + * + * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING + * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR + * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. + * + * Sun source code is provided with no support and without any obligation on + * the part of Sun Microsystems, Inc. to assist in its use, correction, + * modification or enhancement. + * + * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE + * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE + * OR ANY PART THEREOF. + * + * In no event will Sun Microsystems, Inc. be liable for any lost revenue + * or profits or other special, indirect and consequential damages, even if + * Sun has been advised of the possibility of such damages. + * + * Sun Microsystems, Inc. + * 2550 Garcia Avenue + * Mountain View, California 94043 + */ + +/* + * g711.c + * + * u-law, A-law and linear PCM conversions. + */ +#define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */ +#define QUANT_MASK (0xf) /* Quantization field mask. */ +#define NSEGS (8) /* Number of A-law segments. */ +#define SEG_SHIFT (4) /* Left shift for segment number. */ +#define SEG_MASK (0x70) /* Segment field mask. */ + +static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF, + 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF}; + +/* copy from CCITT G.711 specifications */ +unsigned char _u2a[128] = { /* u- to A-law conversions */ + 1, 1, 2, 2, 3, 3, 4, 4, + 5, 5, 6, 6, 7, 7, 8, 8, + 9, 10, 11, 12, 13, 14, 15, 16, + 17, 18, 19, 20, 21, 22, 23, 24, + 25, 27, 29, 31, 33, 34, 35, 36, + 37, 38, 39, 40, 41, 42, 43, 44, + 46, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 81, 82, 83, 84, 85, 86, 87, 88, + 89, 90, 91, 92, 93, 94, 95, 96, + 97, 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, 111, 112, + 113, 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126, 127, 128}; + +unsigned char _a2u[128] = { /* A- to u-law conversions */ + 1, 3, 5, 7, 9, 11, 13, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 32, 33, 33, 34, 34, 35, 35, + 36, 37, 38, 39, 40, 41, 42, 43, + 44, 45, 46, 47, 48, 48, 49, 49, + 50, 51, 52, 53, 54, 55, 56, 57, + 58, 59, 60, 61, 62, 63, 64, 64, + 65, 66, 67, 68, 69, 70, 71, 72, + 73, 74, 75, 76, 77, 78, 79, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127}; + +static int +search( + int val, + short *table, + int size) +{ + int i; + + for (i = 0; i < size; i++) { + if (val <= *table++) + return (i); + } + return (size); +} + +/* + * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law + * + * linear2alaw() accepts an 16-bit integer and encodes it as A-law data. + * + * Linear Input Code Compressed Code + * ------------------------ --------------- + * 0000000wxyza 000wxyz + * 0000001wxyza 001wxyz + * 000001wxyzab 010wxyz + * 00001wxyzabc 011wxyz + * 0001wxyzabcd 100wxyz + * 001wxyzabcde 101wxyz + * 01wxyzabcdef 110wxyz + * 1wxyzabcdefg 111wxyz + * + * For further information see John C. Bellamy's Digital Telephony, 1982, + * John Wiley & Sons, pps 98-111 and 472-476. + */ +unsigned char +linear2alaw( + int pcm_val) /* 2's complement (16-bit range) */ +{ + int mask; + int seg; + unsigned char aval; + + if (pcm_val >= 0) { + mask = 0xD5; /* sign (7th) bit = 1 */ + } else { + mask = 0x55; /* sign bit = 0 */ + pcm_val = -pcm_val - 8; + } + + /* Convert the scaled magnitude to segment number. */ + seg = search(pcm_val, seg_end, 8); + + /* Combine the sign, segment, and quantization bits. */ + + if (seg >= 8) /* out of range, return maximum value. */ + return (0x7F ^ mask); + else { + aval = seg << SEG_SHIFT; + if (seg < 2) + aval |= (pcm_val >> 4) & QUANT_MASK; + else + aval |= (pcm_val >> (seg + 3)) & QUANT_MASK; + return (aval ^ mask); + } +} + +/* + * alaw2linear() - Convert an A-law value to 16-bit linear PCM + * + */ +int +alaw2linear( + unsigned char a_val) +{ + int t; + int seg; + + a_val ^= 0x55; + + t = (a_val & QUANT_MASK) << 4; + seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT; + switch (seg) { + case 0: + t += 8; + break; + case 1: + t += 0x108; + break; + default: + t += 0x108; + t <<= seg - 1; + } + return ((a_val & SIGN_BIT) ? t : -t); +} + +#define BIAS (0x84) /* Bias for linear code. */ + +/* + * linear2ulaw() - Convert a linear PCM value to u-law + * + * In order to simplify the encoding process, the original linear magnitude + * is biased by adding 33 which shifts the encoding range from (0 - 8158) to + * (33 - 8191). The result can be seen in the following encoding table: + * + * Biased Linear Input Code Compressed Code + * ------------------------ --------------- + * 00000001wxyza 000wxyz + * 0000001wxyzab 001wxyz + * 000001wxyzabc 010wxyz + * 00001wxyzabcd 011wxyz + * 0001wxyzabcde 100wxyz + * 001wxyzabcdef 101wxyz + * 01wxyzabcdefg 110wxyz + * 1wxyzabcdefgh 111wxyz + * + * Each biased linear code has a leading 1 which identifies the segment + * number. The value of the segment number is equal to 7 minus the number + * of leading 0's. The quantization interval is directly available as the + * four bits wxyz. * The trailing bits (a - h) are ignored. + * + * Ordinarily the complement of the resulting code word is used for + * transmission, and so the code word is complemented before it is returned. + * + * For further information see John C. Bellamy's Digital Telephony, 1982, + * John Wiley & Sons, pps 98-111 and 472-476. + */ +unsigned char +linear2ulaw( + int pcm_val) /* 2's complement (16-bit range) */ +{ + int mask; + int seg; + unsigned char uval; + + /* Get the sign and the magnitude of the value. */ + if (pcm_val < 0) { + pcm_val = BIAS - pcm_val; + mask = 0x7F; + } else { + pcm_val += BIAS; + mask = 0xFF; + } + + /* Convert the scaled magnitude to segment number. */ + seg = search(pcm_val, seg_end, 8); + + /* + * Combine the sign, segment, quantization bits; + * and complement the code word. + */ + if (seg >= 8) /* out of range, return maximum value. */ + return (0x7F ^ mask); + else { + uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF); + return (uval ^ mask); + } + +} + +/* + * ulaw2linear() - Convert a u-law value to 16-bit linear PCM + * + * First, a biased linear code is derived from the code word. An unbiased + * output can then be obtained by subtracting 33 from the biased code. + * + * Note that this function expects to be passed the complement of the + * original code word. This is in keeping with ISDN conventions. + */ +int +ulaw2linear( + unsigned char u_val) +{ + int t; + + /* Complement to obtain normal u-law value. */ + u_val = ~u_val; + + /* + * Extract and bias the quantization bits. Then + * shift up by the segment number and subtract out the bias. + */ + t = ((u_val & QUANT_MASK) << 3) + BIAS; + t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT; + + return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS)); +} + +/* A-law to u-law conversion */ +unsigned char +alaw2ulaw( + unsigned char aval) +{ + aval &= 0xff; + return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) : + (0x7F ^ _a2u[aval ^ 0x55])); +} + +/* u-law to A-law conversion */ +unsigned char +ulaw2alaw( + unsigned char uval) +{ + uval &= 0xff; + return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) : + (0x55 ^ (_u2a[0x7F ^ uval] - 1))); +} diff --git a/gr-vocoder/lib/g7xx/g721.c b/gr-vocoder/lib/g7xx/g721.c new file mode 100644 index 000000000..445f177e8 --- /dev/null +++ b/gr-vocoder/lib/g7xx/g721.c @@ -0,0 +1,173 @@ +/* + * This source code is a product of Sun Microsystems, Inc. and is provided + * for unrestricted use. Users may copy or modify this source code without + * charge. + * + * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING + * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR + * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. + * + * Sun source code is provided with no support and without any obligation on + * the part of Sun Microsystems, Inc. to assist in its use, correction, + * modification or enhancement. + * + * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE + * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE + * OR ANY PART THEREOF. + * + * In no event will Sun Microsystems, Inc. be liable for any lost revenue + * or profits or other special, indirect and consequential damages, even if + * Sun has been advised of the possibility of such damages. + * + * Sun Microsystems, Inc. + * 2550 Garcia Avenue + * Mountain View, California 94043 + */ + +/* + * g721.c + * + * Description: + * + * g721_encoder(), g721_decoder() + * + * These routines comprise an implementation of the CCITT G.721 ADPCM + * coding algorithm. Essentially, this implementation is identical to + * the bit level description except for a few deviations which + * take advantage of work station attributes, such as hardware 2's + * complement arithmetic and large memory. Specifically, certain time + * consuming operations such as multiplications are replaced + * with lookup tables and software 2's complement operations are + * replaced with hardware 2's complement. + * + * The deviation from the bit level specification (lookup tables) + * preserves the bit level performance specifications. + * + * As outlined in the G.721 Recommendation, the algorithm is broken + * down into modules. Each section of code below is preceded by + * the name of the module which it is implementing. + * + */ +#include "g72x.h" + +static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400}; +/* + * Maps G.721 code word to reconstructed scale factor normalized log + * magnitude values. + */ +static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425, + 425, 373, 323, 273, 213, 135, 4, -2048}; + +/* Maps G.721 code word to log of scale factor multiplier. */ +static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122, + 1122, 355, 198, 112, 64, 41, 18, -12}; +/* + * Maps G.721 code words to a set of values whose long and short + * term averages are computed and then compared to give an indication + * how stationary (steady state) the signal is. + */ +static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00, + 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0}; + +/* + * g721_encoder() + * + * Encodes the input vale of linear PCM, A-law or u-law data sl and returns + * the resulting code. -1 is returned for unknown input coding value. + */ +int +g721_encoder( + int sl, + int in_coding, + struct g72x_state *state_ptr) +{ + short sezi, se, sez; /* ACCUM */ + short d; /* SUBTA */ + short sr; /* ADDB */ + short y; /* MIX */ + short dqsez; /* ADDC */ + short dq, i; + + switch (in_coding) { /* linearize input sample to 14-bit PCM */ + case AUDIO_ENCODING_ALAW: + sl = alaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_ULAW: + sl = ulaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_LINEAR: + sl >>= 2; /* 14-bit dynamic range */ + break; + default: + return (-1); + } + + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */ + + d = sl - se; /* estimation difference */ + + /* quantize the prediction difference */ + y = step_size(state_ptr); /* quantizer step size */ + i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */ + + dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */ + + sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */ + + dqsez = sr + sez - se; /* pole prediction diff. */ + + update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); + + return (i); +} + +/* + * g721_decoder() + * + * Description: + * + * Decodes a 4-bit code of G.721 encoded data of i and + * returns the resulting linear PCM, A-law or u-law value. + * return -1 for unknown out_coding value. + */ +int +g721_decoder( + int i, + int out_coding, + struct g72x_state *state_ptr) +{ + short sezi, sei, sez, se; /* ACCUM */ + short y; /* MIX */ + short sr; /* ADDB */ + short dq; + short dqsez; + + i &= 0x0f; /* mask to get proper bits */ + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + y = step_size(state_ptr); /* dynamic quantizer step size */ + + dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */ + + sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */ + + dqsez = sr - se + sez; /* pole prediction diff. */ + + update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); + + switch (out_coding) { + case AUDIO_ENCODING_ALAW: + return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721)); + case AUDIO_ENCODING_ULAW: + return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721)); + case AUDIO_ENCODING_LINEAR: + return (sr << 2); /* sr was 14-bit dynamic range */ + default: + return (-1); + } +} diff --git a/gr-vocoder/lib/g7xx/g723_24.c b/gr-vocoder/lib/g7xx/g723_24.c new file mode 100644 index 000000000..452f4daeb --- /dev/null +++ b/gr-vocoder/lib/g7xx/g723_24.c @@ -0,0 +1,158 @@ +/* + * This source code is a product of Sun Microsystems, Inc. and is provided + * for unrestricted use. Users may copy or modify this source code without + * charge. + * + * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING + * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR + * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. + * + * Sun source code is provided with no support and without any obligation on + * the part of Sun Microsystems, Inc. to assist in its use, correction, + * modification or enhancement. + * + * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE + * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE + * OR ANY PART THEREOF. + * + * In no event will Sun Microsystems, Inc. be liable for any lost revenue + * or profits or other special, indirect and consequential damages, even if + * Sun has been advised of the possibility of such damages. + * + * Sun Microsystems, Inc. + * 2550 Garcia Avenue + * Mountain View, California 94043 + */ + +/* + * g723_24.c + * + * Description: + * + * g723_24_encoder(), g723_24_decoder() + * + * These routines comprise an implementation of the CCITT G.723 24 Kbps + * ADPCM coding algorithm. Essentially, this implementation is identical to + * the bit level description except for a few deviations which take advantage + * of workstation attributes, such as hardware 2's complement arithmetic. + * + */ +#include "g72x.h" + +/* + * Maps G.723_24 code word to reconstructed scale factor normalized log + * magnitude values. + */ +static short _dqlntab[8] = {-2048, 135, 273, 373, 373, 273, 135, -2048}; + +/* Maps G.723_24 code word to log of scale factor multiplier. */ +static short _witab[8] = {-128, 960, 4384, 18624, 18624, 4384, 960, -128}; + +/* + * Maps G.723_24 code words to a set of values whose long and short + * term averages are computed and then compared to give an indication + * how stationary (steady state) the signal is. + */ +static short _fitab[8] = {0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0}; + +static short qtab_723_24[3] = {8, 218, 331}; + +/* + * g723_24_encoder() + * + * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code. + * Returns -1 if invalid input coding value. + */ +int +g723_24_encoder( + int sl, + int in_coding, + struct g72x_state *state_ptr) +{ + short sei, sezi, se, sez; /* ACCUM */ + short d; /* SUBTA */ + short y; /* MIX */ + short sr; /* ADDB */ + short dqsez; /* ADDC */ + short dq, i; + + switch (in_coding) { /* linearize input sample to 14-bit PCM */ + case AUDIO_ENCODING_ALAW: + sl = alaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_ULAW: + sl = ulaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_LINEAR: + sl >>= 2; /* sl of 14-bit dynamic range */ + break; + default: + return (-1); + } + + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + d = sl - se; /* d = estimation diff. */ + + /* quantize prediction difference d */ + y = step_size(state_ptr); /* quantizer step size */ + i = quantize(d, y, qtab_723_24, 3); /* i = ADPCM code */ + dq = reconstruct(i & 4, _dqlntab[i], y); /* quantized diff. */ + + sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */ + + dqsez = sr + sez - se; /* pole prediction diff. */ + + update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); + + return (i); +} + +/* + * g723_24_decoder() + * + * Decodes a 3-bit CCITT G.723_24 ADPCM code and returns + * the resulting 16-bit linear PCM, A-law or u-law sample value. + * -1 is returned if the output coding is unknown. + */ +int +g723_24_decoder( + int i, + int out_coding, + struct g72x_state *state_ptr) +{ + short sezi, sei, sez, se; /* ACCUM */ + short y; /* MIX */ + short sr; /* ADDB */ + short dq; + short dqsez; + + i &= 0x07; /* mask to get proper bits */ + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + y = step_size(state_ptr); /* adaptive quantizer step size */ + dq = reconstruct(i & 0x04, _dqlntab[i], y); /* unquantize pred diff */ + + sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */ + + dqsez = sr - se + sez; /* pole prediction diff. */ + + update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); + + switch (out_coding) { + case AUDIO_ENCODING_ALAW: + return (tandem_adjust_alaw(sr, se, y, i, 4, qtab_723_24)); + case AUDIO_ENCODING_ULAW: + return (tandem_adjust_ulaw(sr, se, y, i, 4, qtab_723_24)); + case AUDIO_ENCODING_LINEAR: + return (sr << 2); /* sr was of 14-bit dynamic range */ + default: + return (-1); + } +} diff --git a/gr-vocoder/lib/g7xx/g723_40.c b/gr-vocoder/lib/g7xx/g723_40.c new file mode 100644 index 000000000..4858baf40 --- /dev/null +++ b/gr-vocoder/lib/g7xx/g723_40.c @@ -0,0 +1,178 @@ +/* + * This source code is a product of Sun Microsystems, Inc. and is provided + * for unrestricted use. Users may copy or modify this source code without + * charge. + * + * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING + * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR + * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. + * + * Sun source code is provided with no support and without any obligation on + * the part of Sun Microsystems, Inc. to assist in its use, correction, + * modification or enhancement. + * + * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE + * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE + * OR ANY PART THEREOF. + * + * In no event will Sun Microsystems, Inc. be liable for any lost revenue + * or profits or other special, indirect and consequential damages, even if + * Sun has been advised of the possibility of such damages. + * + * Sun Microsystems, Inc. + * 2550 Garcia Avenue + * Mountain View, California 94043 + */ + +/* + * g723_40.c + * + * Description: + * + * g723_40_encoder(), g723_40_decoder() + * + * These routines comprise an implementation of the CCITT G.723 40Kbps + * ADPCM coding algorithm. Essentially, this implementation is identical to + * the bit level description except for a few deviations which + * take advantage of workstation attributes, such as hardware 2's + * complement arithmetic. + * + * The deviation from the bit level specification (lookup tables), + * preserves the bit level performance specifications. + * + * As outlined in the G.723 Recommendation, the algorithm is broken + * down into modules. Each section of code below is preceded by + * the name of the module which it is implementing. + * + */ +#include "g72x.h" + +/* + * Maps G.723_40 code word to ructeconstructed scale factor normalized log + * magnitude values. + */ +static short _dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318, + 358, 395, 429, 459, 488, 514, 539, 566, + 566, 539, 514, 488, 459, 429, 395, 358, + 318, 274, 224, 169, 104, 28, -66, -2048}; + +/* Maps G.723_40 code word to log of scale factor multiplier. */ +static short _witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200, + 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, + 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, + 3200, 1856, 1312, 1280, 1248, 768, 448, 448}; + +/* + * Maps G.723_40 code words to a set of values whose long and short + * term averages are computed and then compared to give an indication + * how stationary (steady state) the signal is. + */ +static short _fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200, + 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, + 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, + 0x200, 0x200, 0x200, 0, 0, 0, 0, 0}; + +static short qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339, + 378, 413, 445, 475, 502, 528, 553}; + +/* + * g723_40_encoder() + * + * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens + * the resulting 5-bit CCITT G.723 40Kbps code. + * Returns -1 if the input coding value is invalid. + */ +int +g723_40_encoder( + int sl, + int in_coding, + struct g72x_state *state_ptr) +{ + short sei, sezi, se, sez; /* ACCUM */ + short d; /* SUBTA */ + short y; /* MIX */ + short sr; /* ADDB */ + short dqsez; /* ADDC */ + short dq, i; + + switch (in_coding) { /* linearize input sample to 14-bit PCM */ + case AUDIO_ENCODING_ALAW: + sl = alaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_ULAW: + sl = ulaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_LINEAR: + sl >>= 2; /* sl of 14-bit dynamic range */ + break; + default: + return (-1); + } + + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + d = sl - se; /* d = estimation difference */ + + /* quantize prediction difference */ + y = step_size(state_ptr); /* adaptive quantizer step size */ + i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */ + + dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */ + + sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */ + + dqsez = sr + sez - se; /* dqsez = pole prediction diff. */ + + update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); + + return (i); +} + +/* + * g723_40_decoder() + * + * Decodes a 5-bit CCITT G.723 40Kbps code and returns + * the resulting 16-bit linear PCM, A-law or u-law sample value. + * -1 is returned if the output coding is unknown. + */ +int +g723_40_decoder( + int i, + int out_coding, + struct g72x_state *state_ptr) +{ + short sezi, sei, sez, se; /* ACCUM */ + short y; /* MIX */ + short sr; /* ADDB */ + short dq; + short dqsez; + + i &= 0x1f; /* mask to get proper bits */ + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + y = step_size(state_ptr); /* adaptive quantizer step size */ + dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */ + + sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */ + + dqsez = sr - se + sez; /* pole prediction diff. */ + + update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); + + switch (out_coding) { + case AUDIO_ENCODING_ALAW: + return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40)); + case AUDIO_ENCODING_ULAW: + return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40)); + case AUDIO_ENCODING_LINEAR: + return (sr << 2); /* sr was of 14-bit dynamic range */ + default: + return (-1); + } +} diff --git a/gr-vocoder/lib/g7xx/g72x.c b/gr-vocoder/lib/g7xx/g72x.c new file mode 100644 index 000000000..9a823c755 --- /dev/null +++ b/gr-vocoder/lib/g7xx/g72x.c @@ -0,0 +1,576 @@ +/* + * This source code is a product of Sun Microsystems, Inc. and is provided + * for unrestricted use. Users may copy or modify this source code without + * charge. + * + * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING + * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR + * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. + * + * Sun source code is provided with no support and without any obligation on + * the part of Sun Microsystems, Inc. to assist in its use, correction, + * modification or enhancement. + * + * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE + * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE + * OR ANY PART THEREOF. + * + * In no event will Sun Microsystems, Inc. be liable for any lost revenue + * or profits or other special, indirect and consequential damages, even if + * Sun has been advised of the possibility of such damages. + * + * Sun Microsystems, Inc. + * 2550 Garcia Avenue + * Mountain View, California 94043 + */ +#include <stdlib.h> +/* + * g72x.c + * + * Common routines for G.721 and G.723 conversions. + */ + +#include "g72x.h" + +static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, + 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000}; + +/* + * quan() + * + * quantizes the input val against the table of size short integers. + * It returns i if table[i - 1] <= val < table[i]. + * + * Using linear search for simple coding. + */ +static int +quan( + int val, + short *table, + int size) +{ + int i; + + for (i = 0; i < size; i++) + if (val < *table++) + break; + return (i); +} + +/* + * fmult() + * + * returns the integer product of the 14-bit integer "an" and + * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn". + */ +static int +fmult( + int an, + int srn) +{ + short anmag, anexp, anmant; + short wanexp, wanmant; + short retval; + + anmag = (an > 0) ? an : ((-an) & 0x1FFF); + anexp = quan(anmag, power2, 15) - 6; + anmant = (anmag == 0) ? 32 : + (anexp >= 0) ? anmag >> anexp : anmag << -anexp; + wanexp = anexp + ((srn >> 6) & 0xF) - 13; + + wanmant = (anmant * (srn & 077) + 0x30) >> 4; + retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : + (wanmant >> -wanexp); + + return (((an ^ srn) < 0) ? -retval : retval); +} + +/* + * g72x_init_state() + * + * This routine initializes and/or resets the g72x_state structure + * pointed to by 'state_ptr'. + * All the initial state values are specified in the CCITT G.721 document. + */ +void +g72x_init_state( + struct g72x_state *state_ptr) +{ + int cnta; + + state_ptr->yl = 34816; + state_ptr->yu = 544; + state_ptr->dms = 0; + state_ptr->dml = 0; + state_ptr->ap = 0; + for (cnta = 0; cnta < 2; cnta++) { + state_ptr->a[cnta] = 0; + state_ptr->pk[cnta] = 0; + state_ptr->sr[cnta] = 32; + } + for (cnta = 0; cnta < 6; cnta++) { + state_ptr->b[cnta] = 0; + state_ptr->dq[cnta] = 32; + } + state_ptr->td = 0; +} + +/* + * predictor_zero() + * + * computes the estimated signal from 6-zero predictor. + * + */ +int +predictor_zero( + struct g72x_state *state_ptr) +{ + int i; + int sezi; + + sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]); + for (i = 1; i < 6; i++) /* ACCUM */ + sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]); + return (sezi); +} +/* + * predictor_pole() + * + * computes the estimated signal from 2-pole predictor. + * + */ +int +predictor_pole( + struct g72x_state *state_ptr) +{ + return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) + + fmult(state_ptr->a[0] >> 2, state_ptr->sr[0])); +} +/* + * step_size() + * + * computes the quantization step size of the adaptive quantizer. + * + */ +int +step_size( + struct g72x_state *state_ptr) +{ + int y; + int dif; + int al; + + if (state_ptr->ap >= 256) + return (state_ptr->yu); + else { + y = state_ptr->yl >> 6; + dif = state_ptr->yu - y; + al = state_ptr->ap >> 2; + if (dif > 0) + y += (dif * al) >> 6; + else if (dif < 0) + y += (dif * al + 0x3F) >> 6; + return (y); + } +} + +/* + * quantize() + * + * Given a raw sample, 'd', of the difference signal and a + * quantization step size scale factor, 'y', this routine returns the + * ADPCM codeword to which that sample gets quantized. The step + * size scale factor division operation is done in the log base 2 domain + * as a subtraction. + */ +int +quantize( + int d, /* Raw difference signal sample */ + int y, /* Step size multiplier */ + short *table, /* quantization table */ + int size) /* table size of short integers */ +{ + short dqm; /* Magnitude of 'd' */ + short exp; /* Integer part of base 2 log of 'd' */ + short mant; /* Fractional part of base 2 log */ + short dl; /* Log of magnitude of 'd' */ + short dln; /* Step size scale factor normalized log */ + int i; + + /* + * LOG + * + * Compute base 2 log of 'd', and store in 'dl'. + */ + dqm = abs(d); + exp = quan(dqm >> 1, power2, 15); + mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */ + dl = (exp << 7) + mant; + + /* + * SUBTB + * + * "Divide" by step size multiplier. + */ + dln = dl - (y >> 2); + + /* + * QUAN + * + * Obtain codword i for 'd'. + */ + i = quan(dln, table, size); + if (d < 0) /* take 1's complement of i */ + return ((size << 1) + 1 - i); + else if (i == 0) /* take 1's complement of 0 */ + return ((size << 1) + 1); /* new in 1988 */ + else + return (i); +} +/* + * reconstruct() + * + * Returns reconstructed difference signal 'dq' obtained from + * codeword 'i' and quantization step size scale factor 'y'. + * Multiplication is performed in log base 2 domain as addition. + */ +int +reconstruct( + int sign, /* 0 for non-negative value */ + int dqln, /* G.72x codeword */ + int y) /* Step size multiplier */ +{ + short dql; /* Log of 'dq' magnitude */ + short dex; /* Integer part of log */ + short dqt; + short dq; /* Reconstructed difference signal sample */ + + dql = dqln + (y >> 2); /* ADDA */ + + if (dql < 0) { + return ((sign) ? -0x8000 : 0); + } else { /* ANTILOG */ + dex = (dql >> 7) & 15; + dqt = 128 + (dql & 127); + dq = (dqt << 7) >> (14 - dex); + return ((sign) ? (dq - 0x8000) : dq); + } +} + + +/* + * update() + * + * updates the state variables for each output code + */ +void +update( + int code_size, /* distinguish 723_40 with others */ + int y, /* quantizer step size */ + int wi, /* scale factor multiplier */ + int fi, /* for long/short term energies */ + int dq, /* quantized prediction difference */ + int sr, /* reconstructed signal */ + int dqsez, /* difference from 2-pole predictor */ + struct g72x_state *state_ptr) /* coder state pointer */ +{ + int cnt; + short mag, exp; /* Adaptive predictor, FLOAT A */ + short a2p = 0; /* LIMC */ + short a1ul; /* UPA1 */ + short pks1; /* UPA2 */ + short fa1; + char tr; /* tone/transition detector */ + short ylint, thr2, dqthr; + short ylfrac, thr1; + short pk0; + + pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */ + + mag = dq & 0x7FFF; /* prediction difference magnitude */ + /* TRANS */ + ylint = state_ptr->yl >> 15; /* exponent part of yl */ + ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */ + thr1 = (32 + ylfrac) << ylint; /* threshold */ + thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */ + dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */ + if (state_ptr->td == 0) /* signal supposed voice */ + tr = 0; + else if (mag <= dqthr) /* supposed data, but small mag */ + tr = 0; /* treated as voice */ + else /* signal is data (modem) */ + tr = 1; + + /* + * Quantizer scale factor adaptation. + */ + + /* FUNCTW & FILTD & DELAY */ + /* update non-steady state step size multiplier */ + state_ptr->yu = y + ((wi - y) >> 5); + + /* LIMB */ + if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */ + state_ptr->yu = 544; + else if (state_ptr->yu > 5120) + state_ptr->yu = 5120; + + /* FILTE & DELAY */ + /* update steady state step size multiplier */ + state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6); + + /* + * Adaptive predictor coefficients. + */ + if (tr == 1) { /* reset a's and b's for modem signal */ + state_ptr->a[0] = 0; + state_ptr->a[1] = 0; + state_ptr->b[0] = 0; + state_ptr->b[1] = 0; + state_ptr->b[2] = 0; + state_ptr->b[3] = 0; + state_ptr->b[4] = 0; + state_ptr->b[5] = 0; + } else { /* update a's and b's */ + pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */ + + /* update predictor pole a[1] */ + a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7); + if (dqsez != 0) { + fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0]; + if (fa1 < -8191) /* a2p = function of fa1 */ + a2p -= 0x100; + else if (fa1 > 8191) + a2p += 0xFF; + else + a2p += fa1 >> 5; + + if (pk0 ^ state_ptr->pk[1]) + /* LIMC */ + if (a2p <= -12160) + a2p = -12288; + else if (a2p >= 12416) + a2p = 12288; + else + a2p -= 0x80; + else if (a2p <= -12416) + a2p = -12288; + else if (a2p >= 12160) + a2p = 12288; + else + a2p += 0x80; + } + + /* TRIGB & DELAY */ + state_ptr->a[1] = a2p; + + /* UPA1 */ + /* update predictor pole a[0] */ + state_ptr->a[0] -= state_ptr->a[0] >> 8; + if (dqsez != 0){ + if (pks1 == 0) + state_ptr->a[0] += 192; + else + state_ptr->a[0] -= 192; + } + + /* LIMD */ + a1ul = 15360 - a2p; + if (state_ptr->a[0] < -a1ul) + state_ptr->a[0] = -a1ul; + else if (state_ptr->a[0] > a1ul) + state_ptr->a[0] = a1ul; + + /* UPB : update predictor zeros b[6] */ + for (cnt = 0; cnt < 6; cnt++) { + if (code_size == 5) /* for 40Kbps G.723 */ + state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9; + else /* for G.721 and 24Kbps G.723 */ + state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8; + if (dq & 0x7FFF) { /* XOR */ + if ((dq ^ state_ptr->dq[cnt]) >= 0) + state_ptr->b[cnt] += 128; + else + state_ptr->b[cnt] -= 128; + } + } + } + + for (cnt = 5; cnt > 0; cnt--) + state_ptr->dq[cnt] = state_ptr->dq[cnt-1]; + /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */ + if (mag == 0) { + state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20; + } else { + exp = quan(mag, power2, 15); + state_ptr->dq[0] = (dq >= 0) ? + (exp << 6) + ((mag << 6) >> exp) : + (exp << 6) + ((mag << 6) >> exp) - 0x400; + } + + state_ptr->sr[1] = state_ptr->sr[0]; + /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */ + if (sr == 0) { + state_ptr->sr[0] = 0x20; + } else if (sr > 0) { + exp = quan(sr, power2, 15); + state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp); + } else if (sr > -32768) { + mag = -sr; + exp = quan(mag, power2, 15); + state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400; + } else + state_ptr->sr[0] = 0xFC20; + + /* DELAY A */ + state_ptr->pk[1] = state_ptr->pk[0]; + state_ptr->pk[0] = pk0; + + /* TONE */ + if (tr == 1) /* this sample has been treated as data */ + state_ptr->td = 0; /* next one will be treated as voice */ + else if (a2p < -11776) /* small sample-to-sample correlation */ + state_ptr->td = 1; /* signal may be data */ + else /* signal is voice */ + state_ptr->td = 0; + + /* + * Adaptation speed control. + */ + state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */ + state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */ + + if (tr == 1) + state_ptr->ap = 256; + else if (y < 1536) /* SUBTC */ + state_ptr->ap += (0x200 - state_ptr->ap) >> 4; + else if (state_ptr->td == 1) + state_ptr->ap += (0x200 - state_ptr->ap) >> 4; + else if (abs((state_ptr->dms << 2) - state_ptr->dml) >= + (state_ptr->dml >> 3)) + state_ptr->ap += (0x200 - state_ptr->ap) >> 4; + else + state_ptr->ap += (-state_ptr->ap) >> 4; +} + +/* + * tandem_adjust(sr, se, y, i, sign) + * + * At the end of ADPCM decoding, it simulates an encoder which may be receiving + * the output of this decoder as a tandem process. If the output of the + * simulated encoder differs from the input to this decoder, the decoder output + * is adjusted by one level of A-law or u-law codes. + * + * Input: + * sr decoder output linear PCM sample, + * se predictor estimate sample, + * y quantizer step size, + * i decoder input code, + * sign sign bit of code i + * + * Return: + * adjusted A-law or u-law compressed sample. + */ +int +tandem_adjust_alaw( + int sr, /* decoder output linear PCM sample */ + int se, /* predictor estimate sample */ + int y, /* quantizer step size */ + int i, /* decoder input code */ + int sign, + short *qtab) +{ + unsigned char sp; /* A-law compressed 8-bit code */ + short dx; /* prediction error */ + char id; /* quantized prediction error */ + int sd; /* adjusted A-law decoded sample value */ + int im; /* biased magnitude of i */ + int imx; /* biased magnitude of id */ + + if (sr <= -32768) + sr = -1; + sp = linear2alaw((sr >> 1) << 3); /* short to A-law compression */ + dx = (alaw2linear(sp) >> 2) - se; /* 16-bit prediction error */ + id = quantize(dx, y, qtab, sign - 1); + + if (id == i) { /* no adjustment on sp */ + return (sp); + } else { /* sp adjustment needed */ + /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */ + im = i ^ sign; /* 2's complement to biased unsigned */ + imx = id ^ sign; + + if (imx > im) { /* sp adjusted to next lower value */ + if (sp & 0x80) { + sd = (sp == 0xD5) ? 0x55 : + ((sp ^ 0x55) - 1) ^ 0x55; + } else { + sd = (sp == 0x2A) ? 0x2A : + ((sp ^ 0x55) + 1) ^ 0x55; + } + } else { /* sp adjusted to next higher value */ + if (sp & 0x80) + sd = (sp == 0xAA) ? 0xAA : + ((sp ^ 0x55) + 1) ^ 0x55; + else + sd = (sp == 0x55) ? 0xD5 : + ((sp ^ 0x55) - 1) ^ 0x55; + } + return (sd); + } +} + +int +tandem_adjust_ulaw( + int sr, /* decoder output linear PCM sample */ + int se, /* predictor estimate sample */ + int y, /* quantizer step size */ + int i, /* decoder input code */ + int sign, + short *qtab) +{ + unsigned char sp; /* u-law compressed 8-bit code */ + short dx; /* prediction error */ + char id; /* quantized prediction error */ + int sd; /* adjusted u-law decoded sample value */ + int im; /* biased magnitude of i */ + int imx; /* biased magnitude of id */ + + if (sr <= -32768) + sr = 0; + sp = linear2ulaw(sr << 2); /* short to u-law compression */ + dx = (ulaw2linear(sp) >> 2) - se; /* 16-bit prediction error */ + id = quantize(dx, y, qtab, sign - 1); + if (id == i) { + return (sp); + } else { + /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */ + im = i ^ sign; /* 2's complement to biased unsigned */ + imx = id ^ sign; + if (imx > im) { /* sp adjusted to next lower value */ + if (sp & 0x80) + sd = (sp == 0xFF) ? 0x7E : sp + 1; + else + sd = (sp == 0) ? 0 : sp - 1; + + } else { /* sp adjusted to next higher value */ + if (sp & 0x80) + sd = (sp == 0x80) ? 0x80 : sp - 1; + else + sd = (sp == 0x7F) ? 0xFE : sp + 1; + } + return (sd); + } +} + + + + + + + + + + + + diff --git a/gr-vocoder/lib/g7xx/g72x.h b/gr-vocoder/lib/g7xx/g72x.h new file mode 100644 index 000000000..33807171a --- /dev/null +++ b/gr-vocoder/lib/g7xx/g72x.h @@ -0,0 +1,156 @@ +/* + * This source code is a product of Sun Microsystems, Inc. and is provided + * for unrestricted use. Users may copy or modify this source code without + * charge. + * + * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING + * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR + * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. + * + * Sun source code is provided with no support and without any obligation on + * the part of Sun Microsystems, Inc. to assist in its use, correction, + * modification or enhancement. + * + * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE + * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE + * OR ANY PART THEREOF. + * + * In no event will Sun Microsystems, Inc. be liable for any lost revenue + * or profits or other special, indirect and consequential damages, even if + * Sun has been advised of the possibility of such damages. + * + * Sun Microsystems, Inc. + * 2550 Garcia Avenue + * Mountain View, California 94043 + */ + +/* + * g72x.h + * + * Header file for CCITT conversion routines. + * + */ +#ifndef _G72X_H +#define _G72X_H + +#define AUDIO_ENCODING_ULAW (1) /* ISDN u-law */ +#define AUDIO_ENCODING_ALAW (2) /* ISDN A-law */ +#define AUDIO_ENCODING_LINEAR (3) /* PCM 2's-complement (0-center) */ + +/* + * The following is the definition of the state structure + * used by the G.721/G.723 encoder and decoder to preserve their internal + * state between successive calls. The meanings of the majority + * of the state structure fields are explained in detail in the + * CCITT Recommendation G.721. The field names are essentially indentical + * to variable names in the bit level description of the coding algorithm + * included in this Recommendation. + */ +struct g72x_state { + long yl; /* Locked or steady state step size multiplier. */ + short yu; /* Unlocked or non-steady state step size multiplier. */ + short dms; /* Short term energy estimate. */ + short dml; /* Long term energy estimate. */ + short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */ + + short a[2]; /* Coefficients of pole portion of prediction filter. */ + short b[6]; /* Coefficients of zero portion of prediction filter. */ + short pk[2]; /* + * Signs of previous two samples of a partially + * reconstructed signal. + */ + short dq[6]; /* + * Previous 6 samples of the quantized difference + * signal represented in an internal floating point + * format. + */ + short sr[2]; /* + * Previous 2 samples of the quantized difference + * signal represented in an internal floating point + * format. + */ + char td; /* delayed tone detect, new in 1988 version */ +}; + +/* External function definitions. */ + +extern void g72x_init_state(struct g72x_state *); +extern int g721_encoder( + int sample, + int in_coding, + struct g72x_state *state_ptr); +extern int g721_decoder( + int code, + int out_coding, + struct g72x_state *state_ptr); +extern int g723_24_encoder( + int sample, + int in_coding, + struct g72x_state *state_ptr); +extern int g723_24_decoder( + int code, + int out_coding, + struct g72x_state *state_ptr); +extern int g723_40_encoder( + int sample, + int in_coding, + struct g72x_state *state_ptr); +extern int g723_40_decoder( + int code, + int out_coding, + struct g72x_state *state_ptr); + + +extern int +quantize( + int d, + int y, + short *table, + int size); +extern int reconstruct(int,int,int);void + +extern update( + int code_size, + int y, + int wi, + int fi, + int dq, + int sr, + int dqsez, + struct g72x_state *state_ptr); +extern int +tandem_adjust_alaw( + int sr, + int se, + int y, + int i, + int sign, + short *qtab); + +extern int +tandem_adjust_ulaw( + int sr, + int se, + int y, + int i, + int sign, + short *qtab); + +extern unsigned char +linear2alaw( + int pcm_val); + +extern int +alaw2linear( + unsigned char a_val); + +extern unsigned char +linear2ulaw(int pcm_val); + +extern int ulaw2linear( unsigned char u_val); + +extern int predictor_zero(struct g72x_state *state_ptr); + +extern int predictor_pole( struct g72x_state *state_ptr); +extern int step_size( struct g72x_state *state_ptr); +#endif /* !_G72X_H */ |