summaryrefslogtreecommitdiff
path: root/gr-trellis/src/examples/python/test_cpm.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-trellis/src/examples/python/test_cpm.py')
-rwxr-xr-xgr-trellis/src/examples/python/test_cpm.py154
1 files changed, 0 insertions, 154 deletions
diff --git a/gr-trellis/src/examples/python/test_cpm.py b/gr-trellis/src/examples/python/test_cpm.py
deleted file mode 100755
index 5342e57e8..000000000
--- a/gr-trellis/src/examples/python/test_cpm.py
+++ /dev/null
@@ -1,154 +0,0 @@
-#!/usr/bin/env python
-##################################################
-# Gnuradio Python Flow Graph
-# Title: CPM test
-# Author: Achilleas Anastasopoulos
-# Description: gnuradio flow graph
-# Generated: Thu Feb 19 23:16:23 2009
-##################################################
-
-from gnuradio import gr
-from gnuradio import trellis, digital
-from gnuradio.gr import firdes
-from grc_gnuradio import blks2 as grc_blks2
-import math
-import numpy
-import fsm_utils
-from gnuradio import trellis
-
-try:
- import scipy.stats
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-def run_test(seed,blocksize):
- tb = gr.top_block()
-
- ##################################################
- # Variables
- ##################################################
- M = 2
- K = 1
- P = 2
- h = (1.0*K)/P
- L = 3
- Q = 4
- frac = 0.99
- f = trellis.fsm(P,M,L)
-
- # CPFSK signals
- #p = numpy.ones(Q)/(2.0)
- #q = numpy.cumsum(p)/(1.0*Q)
-
- # GMSK signals
- BT=0.3;
- tt=numpy.arange(0,L*Q)/(1.0*Q)-L/2.0;
- #print tt
- p=(0.5*scipy.stats.erfc(2*math.pi*BT*(tt-0.5)/math.sqrt(math.log(2.0))/math.sqrt(2.0))-0.5*scipy.stats.erfc(2*math.pi*BT*(tt+0.5)/math.sqrt(math.log(2.0))/math.sqrt(2.0)))/2.0;
- p=p/sum(p)*Q/2.0;
- #print p
- q=numpy.cumsum(p)/Q;
- q=q/q[-1]/2.0;
- #print q
-
- (f0T,SS,S,F,Sf,Ff,N) = fsm_utils.make_cpm_signals(K,P,M,L,q,frac)
- #print N
- #print Ff
- Ffa = numpy.insert(Ff,Q,numpy.zeros(N),axis=0)
- #print Ffa
- MF = numpy.fliplr(numpy.transpose(Ffa))
- #print MF
- E = numpy.sum(numpy.abs(Sf)**2,axis=0)
- Es = numpy.sum(E)/f.O()
- #print Es
-
- constellation = numpy.reshape(numpy.transpose(Sf),N*f.O())
- #print Ff
- #print Sf
- #print constellation
- #print numpy.max(numpy.abs(SS - numpy.dot(Ff , Sf)))
-
- EsN0_db = 10.0
- N0 = Es * 10.0**(-(1.0*EsN0_db)/10.0)
- #N0 = 0.0
- #print N0
- head = 4
- tail = 4
- numpy.random.seed(seed*666)
- data = numpy.random.randint(0, M, head+blocksize+tail+1)
- #data = numpy.zeros(blocksize+1+head+tail,'int')
- for i in range(head):
- data[i]=0
- for i in range(tail+1):
- data[-i]=0
-
-
-
- ##################################################
- # Blocks
- ##################################################
- random_source_x_0 = gr.vector_source_b(data.tolist(), False)
- gr_chunks_to_symbols_xx_0 = gr.chunks_to_symbols_bf((-1, 1), 1)
- gr_interp_fir_filter_xxx_0 = gr.interp_fir_filter_fff(Q, p)
- gr_frequency_modulator_fc_0 = gr.frequency_modulator_fc(2*math.pi*h*(1.0/Q))
-
- gr_add_vxx_0 = gr.add_vcc(1)
- gr_noise_source_x_0 = gr.noise_source_c(gr.GR_GAUSSIAN, (N0/2.0)**0.5, -long(seed))
-
- gr_multiply_vxx_0 = gr.multiply_vcc(1)
- gr_sig_source_x_0 = gr.sig_source_c(Q, gr.GR_COS_WAVE, -f0T, 1, 0)
- # only works for N=2, do it manually for N>2...
- gr_fir_filter_xxx_0_0 = gr.fir_filter_ccc(Q, MF[0].conjugate())
- gr_fir_filter_xxx_0_0_0 = gr.fir_filter_ccc(Q, MF[1].conjugate())
- gr_streams_to_stream_0 = gr.streams_to_stream(gr.sizeof_gr_complex*1, int(N))
- gr_skiphead_0 = gr.skiphead(gr.sizeof_gr_complex*1, int(N*(1+0)))
- viterbi = trellis.viterbi_combined_cb(f, head+blocksize+tail, 0, -1, int(N),
- constellation, digital.TRELLIS_EUCLIDEAN)
-
- gr_vector_sink_x_0 = gr.vector_sink_b()
-
- ##################################################
- # Connections
- ##################################################
- tb.connect((random_source_x_0, 0), (gr_chunks_to_symbols_xx_0, 0))
- tb.connect((gr_chunks_to_symbols_xx_0, 0), (gr_interp_fir_filter_xxx_0, 0))
- tb.connect((gr_interp_fir_filter_xxx_0, 0), (gr_frequency_modulator_fc_0, 0))
- tb.connect((gr_frequency_modulator_fc_0, 0), (gr_add_vxx_0, 0))
- tb.connect((gr_noise_source_x_0, 0), (gr_add_vxx_0, 1))
- tb.connect((gr_add_vxx_0, 0), (gr_multiply_vxx_0, 0))
- tb.connect((gr_sig_source_x_0, 0), (gr_multiply_vxx_0, 1))
- tb.connect((gr_multiply_vxx_0, 0), (gr_fir_filter_xxx_0_0, 0))
- tb.connect((gr_multiply_vxx_0, 0), (gr_fir_filter_xxx_0_0_0, 0))
- tb.connect((gr_fir_filter_xxx_0_0, 0), (gr_streams_to_stream_0, 0))
- tb.connect((gr_fir_filter_xxx_0_0_0, 0), (gr_streams_to_stream_0, 1))
- tb.connect((gr_streams_to_stream_0, 0), (gr_skiphead_0, 0))
- tb.connect((gr_skiphead_0, 0), (viterbi, 0))
- tb.connect((viterbi, 0), (gr_vector_sink_x_0, 0))
-
-
- tb.run()
- dataest = gr_vector_sink_x_0.data()
- #print data
- #print numpy.array(dataest)
- perr = 0
- err = 0
- for i in range(blocksize):
- if data[head+i] != dataest[head+i]:
- #print i
- err += 1
- if err != 0 :
- perr = 1
- return (err,perr)
-
-if __name__ == '__main__':
- blocksize = 1000
- ss=0
- ee=0
- for i in range(10000):
- (s,e) = run_test(i,blocksize)
- ss += s
- ee += e
- if (i+1) % 100 == 0:
- print i+1,ss,ee,(1.0*ss)/(i+1)/(1.0*blocksize),(1.0*ee)/(i+1)
- print i+1,ss,ee,(1.0*ss)/(i+1)/(1.0*blocksize),(1.0*ee)/(i+1)