diff options
Diffstat (limited to 'gr-gsm-fr-vocoder/src/lib/gsm/lpc.c')
-rw-r--r-- | gr-gsm-fr-vocoder/src/lib/gsm/lpc.c | 341 |
1 files changed, 341 insertions, 0 deletions
diff --git a/gr-gsm-fr-vocoder/src/lib/gsm/lpc.c b/gr-gsm-fr-vocoder/src/lib/gsm/lpc.c new file mode 100644 index 000000000..ac2b8a9eb --- /dev/null +++ b/gr-gsm-fr-vocoder/src/lib/gsm/lpc.c @@ -0,0 +1,341 @@ +/* + * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische + * Universitaet Berlin. See the accompanying file "COPYRIGHT" for + * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. + */ + +/* $Header$ */ + +#include <stdio.h> +#include <assert.h> + +#include "private.h" + +#include "gsm.h" +#include "proto.h" + +#undef P + +/* + * 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION + */ + +/* 4.2.4 */ + + +static void Autocorrelation P2((s, L_ACF), + word * s, /* [0..159] IN/OUT */ + longword * L_ACF) /* [0..8] OUT */ +/* + * The goal is to compute the array L_ACF[k]. The signal s[i] must + * be scaled in order to avoid an overflow situation. + */ +{ + register int k, i; + + word temp, smax, scalauto; + +#ifdef USE_FLOAT_MUL + float float_s[160]; +#endif + + /* Dynamic scaling of the array s[0..159] + */ + + /* Search for the maximum. + */ + smax = 0; + for (k = 0; k <= 159; k++) { + temp = GSM_ABS( s[k] ); + if (temp > smax) smax = temp; + } + + /* Computation of the scaling factor. + */ + if (smax == 0) scalauto = 0; + else { + assert(smax > 0); + scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */ + } + + /* Scaling of the array s[0...159] + */ + + if (scalauto > 0) { + +# ifdef USE_FLOAT_MUL +# define SCALE(n) \ + case n: for (k = 0; k <= 159; k++) \ + float_s[k] = (float) \ + (s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\ + break; +# else +# define SCALE(n) \ + case n: for (k = 0; k <= 159; k++) \ + s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\ + break; +# endif /* USE_FLOAT_MUL */ + + switch (scalauto) { + SCALE(1) + SCALE(2) + SCALE(3) + SCALE(4) + } +# undef SCALE + } +# ifdef USE_FLOAT_MUL + else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k]; +# endif + + /* Compute the L_ACF[..]. + */ + { +# ifdef USE_FLOAT_MUL + register float * sp = float_s; + register float sl = *sp; + +# define STEP(k) L_ACF[k] += (longword)(sl * sp[ -(k) ]); +# else + word * sp = s; + word sl = *sp; + +# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]); +# endif + +# define NEXTI sl = *++sp + + + for (k = 9; k--; L_ACF[k] = 0) ; + + STEP (0); + NEXTI; + STEP(0); STEP(1); + NEXTI; + STEP(0); STEP(1); STEP(2); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7); + + for (i = 8; i <= 159; i++) { + + NEXTI; + + STEP(0); + STEP(1); STEP(2); STEP(3); STEP(4); + STEP(5); STEP(6); STEP(7); STEP(8); + } + + for (k = 9; k--; L_ACF[k] <<= 1) ; + + } + /* Rescaling of the array s[0..159] + */ + if (scalauto > 0) { + assert(scalauto <= 4); + for (k = 160; k--; *s++ <<= scalauto) ; + } +} + +#if defined(USE_FLOAT_MUL) && defined(FAST) + +static void Fast_Autocorrelation P2((s, L_ACF), + word * s, /* [0..159] IN/OUT */ + longword * L_ACF) /* [0..8] OUT */ +{ + register int k, i; + float f_L_ACF[9]; + float scale; + + float s_f[160]; + register float *sf = s_f; + + for (i = 0; i < 160; ++i) sf[i] = s[i]; + for (k = 0; k <= 8; k++) { + register float L_temp2 = 0; + register float *sfl = sf - k; + for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i]; + f_L_ACF[k] = L_temp2; + } + scale = MAX_LONGWORD / f_L_ACF[0]; + + for (k = 0; k <= 8; k++) { + L_ACF[k] = f_L_ACF[k] * scale; + } +} +#endif /* defined (USE_FLOAT_MUL) && defined (FAST) */ + +/* 4.2.5 */ + +static void Reflection_coefficients P2( (L_ACF, r), + longword * L_ACF, /* 0...8 IN */ + register word * r /* 0...7 OUT */ +) +{ + register int i, m, n; + register word temp; + register longword ltmp; + word ACF[9]; /* 0..8 */ + word P[ 9]; /* 0..8 */ + word K[ 9]; /* 2..8 */ + + /* Schur recursion with 16 bits arithmetic. + */ + + if (L_ACF[0] == 0) { + for (i = 8; i--; *r++ = 0) ; + return; + } + + assert( L_ACF[0] != 0 ); + temp = gsm_norm( L_ACF[0] ); + + assert(temp >= 0 && temp < 32); + + /* ? overflow ? */ + for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 ); + + /* Initialize array P[..] and K[..] for the recursion. + */ + + for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ]; + for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ]; + + /* Compute reflection coefficients + */ + for (n = 1; n <= 8; n++, r++) { + + temp = P[1]; + temp = GSM_ABS(temp); + if (P[0] < temp) { + for (i = n; i <= 8; i++) *r++ = 0; + return; + } + + *r = gsm_div( temp, P[0] ); + + assert(*r >= 0); + if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */ + assert (*r != MIN_WORD); + if (n == 8) return; + + /* Schur recursion + */ + temp = GSM_MULT_R( P[1], *r ); + P[0] = GSM_ADD( P[0], temp ); + + for (m = 1; m <= 8 - n; m++) { + temp = GSM_MULT_R( K[ m ], *r ); + P[m] = GSM_ADD( P[ m+1 ], temp ); + + temp = GSM_MULT_R( P[ m+1 ], *r ); + K[m] = GSM_ADD( K[ m ], temp ); + } + } +} + +/* 4.2.6 */ + +static void Transformation_to_Log_Area_Ratios P1((r), + register word * r /* 0..7 IN/OUT */ +) +/* + * The following scaling for r[..] and LAR[..] has been used: + * + * r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1. + * LAR[..] = integer( real_LAR[..] * 16384 ); + * with -1.625 <= real_LAR <= 1.625 + */ +{ + register word temp; + register int i; + + + /* Computation of the LAR[0..7] from the r[0..7] + */ + for (i = 1; i <= 8; i++, r++) { + + temp = *r; + temp = GSM_ABS(temp); + assert(temp >= 0); + + if (temp < 22118) { + temp >>= 1; + } else if (temp < 31130) { + assert( temp >= 11059 ); + temp -= 11059; + } else { + assert( temp >= 26112 ); + temp -= 26112; + temp <<= 2; + } + + *r = *r < 0 ? -temp : temp; + assert( *r != MIN_WORD ); + } +} + +/* 4.2.7 */ + +static void Quantization_and_coding P1((LAR), + register word * LAR /* [0..7] IN/OUT */ +) +{ + register word temp; + longword ltmp; + + + /* This procedure needs four tables; the following equations + * give the optimum scaling for the constants: + * + * A[0..7] = integer( real_A[0..7] * 1024 ) + * B[0..7] = integer( real_B[0..7] * 512 ) + * MAC[0..7] = maximum of the LARc[0..7] + * MIC[0..7] = minimum of the LARc[0..7] + */ + +# undef STEP +# define STEP( A, B, MAC, MIC ) \ + temp = GSM_MULT( A, *LAR ); \ + temp = GSM_ADD( temp, B ); \ + temp = GSM_ADD( temp, 256 ); \ + temp = SASR( temp, 9 ); \ + *LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \ + LAR++; + + STEP( 20480, 0, 31, -32 ); + STEP( 20480, 0, 31, -32 ); + STEP( 20480, 2048, 15, -16 ); + STEP( 20480, -2560, 15, -16 ); + + STEP( 13964, 94, 7, -8 ); + STEP( 15360, -1792, 7, -8 ); + STEP( 8534, -341, 3, -4 ); + STEP( 9036, -1144, 3, -4 ); + +# undef STEP +} + +void Gsm_LPC_Analysis P3((S, s,LARc), + struct gsm_state *S, + word * s, /* 0..159 signals IN/OUT */ + word * LARc) /* 0..7 LARc's OUT */ +{ + longword L_ACF[9]; + +#if defined(USE_FLOAT_MUL) && defined(FAST) + if (S->fast) Fast_Autocorrelation (s, L_ACF ); + else +#endif + Autocorrelation (s, L_ACF ); + Reflection_coefficients (L_ACF, LARc ); + Transformation_to_Log_Area_Ratios (LARc); + Quantization_and_coding (LARc); +} |