summaryrefslogtreecommitdiff
path: root/gr-error-correcting-codes/src
diff options
context:
space:
mode:
Diffstat (limited to 'gr-error-correcting-codes/src')
-rw-r--r--gr-error-correcting-codes/src/Makefile.am2
-rw-r--r--gr-error-correcting-codes/src/lib/Makefile.am12
-rw-r--r--gr-error-correcting-codes/src/lib/ecc_metrics_decode_viterbi_full_block.h26
-rw-r--r--gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.cc4
-rw-r--r--gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.h8
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.cc398
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.h30
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/decoder.cc8
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/encoder.cc91
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/encoder.h2
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.cc116
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.h13
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/mld/n2bs.cc23
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.cc2232
-rw-r--r--gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.h97
15 files changed, 2646 insertions, 416 deletions
diff --git a/gr-error-correcting-codes/src/Makefile.am b/gr-error-correcting-codes/src/Makefile.am
index a7da9c7ae..c6a4f7003 100644
--- a/gr-error-correcting-codes/src/Makefile.am
+++ b/gr-error-correcting-codes/src/Makefile.am
@@ -22,3 +22,5 @@
SUBDIRS = lib python
MOSTLYCLEANFILES = *~
+
+CONFIG_CLEAN_FILES = *.in
diff --git a/gr-error-correcting-codes/src/lib/Makefile.am b/gr-error-correcting-codes/src/lib/Makefile.am
index 75559527b..ca3c99c68 100644
--- a/gr-error-correcting-codes/src/lib/Makefile.am
+++ b/gr-error-correcting-codes/src/lib/Makefile.am
@@ -30,16 +30,14 @@ SUBDIRS = libecc
ourpythondir = $(grpythondir)
ourlibdir = $(grpythondir)
-INCLUDES = $(STD_DEFINES_AND_INCLUDES) $(PYTHON_CPPFLAGS)
+INCLUDES = $(PYTHON_CPPFLAGS) $(STD_DEFINES_AND_INCLUDES)
-SWIGCPPPYTHONARGS = -fvirtual -python -modern $(PYTHON_CPPFLAGS) $(STD_DEFINES_AND_INCLUDES)
+SWIGCPPPYTHONARGS = -fvirtual -python -modern $(PYTHON_CPPFLAGS) \
+ $(STD_DEFINES_AND_INCLUDES)
-ALL_IFILES = \
- $(LOCAL_IFILES) \
- $(NON_LOCAL_IFILES)
+ALL_IFILES = $(LOCAL_IFILES) $(NON_LOCAL_IFILES)
-NON_LOCAL_IFILES = \
- $(GNURADIO_I)
+NON_LOCAL_IFILES = $(GNURADIO_I)
LOCAL_IFILES = \
ecc_syms_to_metrics.i \
diff --git a/gr-error-correcting-codes/src/lib/ecc_metrics_decode_viterbi_full_block.h b/gr-error-correcting-codes/src/lib/ecc_metrics_decode_viterbi_full_block.h
index 9f37f0525..b25f35b1f 100644
--- a/gr-error-correcting-codes/src/lib/ecc_metrics_decode_viterbi_full_block.h
+++ b/gr-error-correcting-codes/src/lib/ecc_metrics_decode_viterbi_full_block.h
@@ -35,21 +35,23 @@ ecc_metrics_decode_viterbi_full_block_feedback_sptr;
ecc_metrics_decode_viterbi_full_block_sptr
ecc_make_metrics_decode_viterbi_full_block
-(int frame_size_bits,
+(int sample_precision,
+ int frame_size_bits,
int n_code_inputs,
int n_code_outputs,
- std::vector<int> code_generator,
+ std::vector<int>& code_generator,
bool do_termination = true,
int start_memory_state = 0,
int end_memory_state = 0);
ecc_metrics_decode_viterbi_full_block_feedback_sptr
ecc_make_metrics_decode_viterbi_full_block_feedback
-(int frame_size_bits,
+(int sample_precision,
+ int frame_size_bits,
int n_code_inputs,
int n_code_outputs,
- std::vector<int> code_generator,
- std::vector<int> code_feedback,
+ std::vector<int>& code_generator,
+ std::vector<int>& code_feedback,
bool do_termination = true,
int start_memory_state = 0,
int end_memory_state = 0);
@@ -72,7 +74,7 @@ protected:
int frame_size_bits,
int n_code_inputs,
int n_code_outputs,
- const std::vector<int> &code_generator,
+ const std::vector<int>& code_generator,
bool do_termination,
int start_memory_state,
int end_memory_state);
@@ -83,8 +85,8 @@ protected:
int frame_size_bits,
int n_code_inputs,
int n_code_outputs,
- const std::vector<int> &code_generator,
- const std::vector<int> &code_feedback,
+ const std::vector<int>& code_generator,
+ const std::vector<int>& code_feedback,
bool do_termination,
int start_memory_state,
int end_memory_state);
@@ -124,7 +126,7 @@ protected:
int frame_size_bits,
int n_code_inputs,
int n_code_outputs,
- const std::vector<int> &code_generator,
+ const std::vector<int>& code_generator,
bool do_termination,
int start_memory_state,
int end_memory_state);
@@ -134,8 +136,8 @@ protected:
int frame_size_bits,
int n_code_inputs,
int n_code_outputs,
- const std::vector<int> &code_generator,
- const std::vector<int> &code_feedback,
+ const std::vector<int>& code_generator,
+ const std::vector<int>& code_feedback,
bool do_termination,
int start_memory_state,
int end_memory_state);
@@ -154,7 +156,7 @@ public:
~ecc_metrics_decode_viterbi_full_block ();
virtual void forecast (int noutput_items,
- gr_vector_int &ninput_items_required);
+ gr_vector_int& ninput_items_required);
virtual int general_work (int noutput_items,
gr_vector_int &ninput_items,
diff --git a/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.cc b/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.cc
index c60eec8a7..0235ab69b 100644
--- a/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.cc
+++ b/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.cc
@@ -84,6 +84,7 @@ ecc_syms_to_metrics::ecc_syms_to_metrics
// use the static "create" member function to create the actual
// code_metrics to use.
+#if 0
d_code_metrics_table = libecc_code_metrics_create_table<float>
(&pdf_fcn_0,
&pdf_fcn_1,
@@ -95,6 +96,7 @@ ecc_syms_to_metrics::ecc_syms_to_metrics
// get the output item size in bytes from the new code_metrics.
d_out_item_size_bytes = d_code_metrics_table->out_item_size_bytes ();
+#endif
// set the output signature to match that which the code_metrics
// will generate.
@@ -136,8 +138,10 @@ ecc_syms_to_metrics::general_work
void* t_out_buf_0_bit = (void*)(&(output_items[2*n]));
void* t_out_buf_1_bit = (void*)(&(output_items[(2*n)+1]));
+#if 0
d_code_metrics_table->convert (l_n_output_items, t_in_buf,
t_out_buf_0_bit, t_out_buf_1_bit);
+#endif
}
// consume the number of used input items on all input streams
diff --git a/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.h b/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.h
index 0f4577ad7..4405241f0 100644
--- a/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.h
+++ b/gr-error-correcting-codes/src/lib/ecc_syms_to_metrics.h
@@ -106,10 +106,16 @@ protected:
int sample_precision);
size_t d_out_item_size_bytes;
+#if 0
code_metrics_table<float>* d_code_metrics_table;
+#endif
public:
- ~ecc_syms_to_metrics() {delete d_code_metrics_table;};
+ ~ecc_syms_to_metrics() {
+#if 0
+ delete d_code_metrics_table;
+#endif
+ };
bool check_topology (int ninputs, int noutputs);
diff --git a/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.cc b/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.cc
index c04fafaec..aabb07958 100644
--- a/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.cc
+++ b/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.cc
@@ -30,7 +30,10 @@
#define DO_TIME_THOUGHPUT 0
#define DO_PRINT_DEBUG 0
-#define DO_PRINT_DEBUG_ENCODE 0
+#define DO_PRINT_DEBUG_VARS 0
+#define DO_PRINT_DEBUG_TERM 0
+#define DO_PRINT_DEBUG_TERM_END 0
+#define DO_PRINT_DEBUG_LOOKUP 0
#include <mld/mld_timer.h>
#include <mld/n2bs.h>
@@ -127,7 +130,7 @@ code_convolutional_trellis::code_convolutional_trellis_init
d_do_streaming = (block_size_bits == 0);
d_do_termination = (d_do_streaming == true) ? false : do_termination;
- if (DO_PRINT_DEBUG) {
+ if (DO_PRINT_DEBUG_VARS) {
std::cout <<
"d_block_size_bits = " << d_block_size_bits << "\n"
"d_n_code_inputs = " << d_n_code_inputs << "\n"
@@ -335,16 +338,16 @@ code_convolutional_trellis::code_convolutional_trellis_init
d_n_memories = d_n_code_inputs;
}
- if (DO_PRINT_DEBUG) {
+ if (DO_PRINT_DEBUG_VARS) {
std::cout <<
" t_total_n_delays_siao = " << d_total_n_delays << "\n"
" t_total_n_delays_soai = " << t_total_n_delays_soai << "\n";
}
- // pick which realization to use; soai is preferred since it's faster
- // ... but unfortunately it's also less likely
+ // pick which realization to use;
+ // siao is preferred since it's easier to debug, and more likely
- if (d_total_n_delays < t_total_n_delays_soai) {
+ if (d_total_n_delays <= t_total_n_delays_soai) {
// use siao
// nothing else to do, since the global variables already hold
// the correct values.
@@ -377,15 +380,16 @@ code_convolutional_trellis::code_convolutional_trellis_init
d_n_states = (1 << d_total_n_delays);
d_n_input_combinations = (1 << d_n_code_inputs);
- memory_t t_mask = (memory_t)((2 << d_total_n_delays) - 1);
+ if (DO_PRINT_DEBUG_VARS) {
+ std::cout <<
+ " d_n_states = " << d_n_states << "\n"
+ " d_n_input_combinations = " << d_n_input_combinations << "\n";
+ }
- if (end_memory_state & t_mask) {
- std::cout << "code_convolutional_trellis: Warning: " <<
- "provided end memory state out (" << end_memory_state <<
- ") is out of the state range [0, " <<
- (d_n_states-1) << "]; masking off the unused bits.\n";
+ if ((d_do_feedback == true) & (d_do_encode_soai == true)) {
+ // create the individual output bits used in soai feedback
- end_memory_state &= t_mask;
+ d_ind_outputs.assign (d_n_memories, 0);
}
// create the max_mem_mask to be used in encoding
@@ -399,10 +403,16 @@ code_convolutional_trellis::code_convolutional_trellis_init
d_max_mem_masks[m] = (memory_t)((2 << (d_n_delays[m])) - 1);
}
- if (DO_PRINT_DEBUG) {
+ if (DO_PRINT_DEBUG_VARS) {
std::cout <<
" d_n_memories = " << d_n_memories << "\n"
- " d_total_n_delays = " << d_total_n_delays << "\n"
+ " d_total_n_delays = " << d_total_n_delays << " : [";
+ for (size_t m = 0; m < d_n_memories; m++) {
+ std::cout << d_n_delays[m];
+ if (m != (d_n_memories-1))
+ std::cout << ", ";
+ }
+ std::cout << "]\n" <<
" d_max_delay = " << d_max_delay << "\n"
" d_do_encode_soai = " <<
((d_do_encode_soai == true) ? "true" : "false") << "\n";
@@ -419,6 +429,18 @@ code_convolutional_trellis::code_convolutional_trellis_init
// create the trellis for this code:
+ memory_t t_mask = (memory_t)((1 << d_total_n_delays) - 1);
+ memory_t t_end_memory_state = (memory_t) end_memory_state;
+
+ if (t_end_memory_state != (t_end_memory_state & t_mask)) {
+ std::cout << "code_convolutional_trellis: Warning: " <<
+ "provided end memory state out (" << end_memory_state <<
+ ") is out of the state range [0, " <<
+ (d_n_states-1) << "]; masking off the unused bits.\n";
+
+ end_memory_state &= t_mask;
+ }
+
create_trellis ();
if (d_do_termination == true) {
@@ -541,11 +563,6 @@ void
code_convolutional_trellis::create_trellis
()
{
- if (DO_PRINT_DEBUG_ENCODE) {
- std::cout << "c_t: # states = " << d_n_states <<
- ", d_n_input_combinations = " << d_n_input_combinations << "\n";
- }
-
// first dimension is the number of states
d_trellis.resize (d_n_states);
@@ -559,18 +576,13 @@ code_convolutional_trellis::create_trellis
// fill in the trellis
- for (memory_t m = 0; m < d_n_states; m++) {
- for (memory_t n = 0; n < d_n_input_combinations; n++) {
+ for (size_t m = 0; m < d_n_states; m++) {
+ for (size_t n = 0; n < d_n_input_combinations; n++) {
connection_t_ptr t_connection = &(d_trellis[m][n]);
- encode_single (m, n, t_connection->d_to_state,
+ encode_single ((memory_t) m,
+ (memory_t) n,
+ t_connection->d_to_state,
t_connection->d_output_bits);
- if (DO_PRINT_DEBUG_ENCODE) {
- std::cout << "set d_t[" << n2bs(m,d_total_n_delays) << "][" <<
- n2bs(n,d_n_code_inputs) << "] : to_st = " <<
- n2bs(t_connection->d_to_state,d_total_n_delays) <<
- ", o_b = " << n2bs(t_connection->d_output_bits,d_n_code_outputs) <<
- "\n";
- }
}
}
}
@@ -585,16 +597,9 @@ code_convolutional_trellis::demux_state
// assumes state bits start after the LSB (not at &1)
memories.resize (d_n_memories);
- if (DO_PRINT_DEBUG_ENCODE) {
- std::cout << "in_st = " << n2bs(in_state,d_total_n_delays) << " ->\n";
- }
for (size_t m = 0; m < d_n_memories; m++) {
memories[m] = (in_state << 1) & d_max_mem_masks[m];
in_state >>= d_n_delays[m];
- if (DO_PRINT_DEBUG_ENCODE) {
- std::cout << " #d = " << d_n_delays[m] << ", mem[" << m << "] = " <<
- n2bs(memories[m], d_n_delays[m]+1) << "\n";
- }
}
}
@@ -604,16 +609,12 @@ code_convolutional_trellis::mux_state
{
// mux bits for the given memory states in d_memory
// assumes state bits start after the LSB (not at &1)
+
memory_t t_state = 0;
size_t shift = 0;
for (size_t m = 0; m < d_n_memories; m++) {
t_state |= (memories[m] >> 1) << shift;
shift += d_n_delays[m];
- if (DO_PRINT_DEBUG_ENCODE) {
- std::cout << " #d = " << d_n_delays[m] << ", mem[" << m << "] = " <<
- n2bs(memories[m], d_n_delays[m]+1) << " -> st = " <<
- n2bs(t_state, d_total_n_delays) << "\n";
- }
}
return (t_state);
}
@@ -623,6 +624,9 @@ code_convolutional_trellis::demux_inputs
(memory_t inputs,
std::vector<char>& in_vec)
{
+ // de-mux bits for the given inputs;
+ // copy them into the provided vector;
+
for (size_t m = 0; m < d_n_code_inputs; m++, inputs >>= 1) {
in_vec[m] = (char)(inputs & 1);
}
@@ -632,6 +636,8 @@ memory_t
code_convolutional_trellis::mux_inputs
(const std::vector<char>& in_vec)
{
+ // mux bits for the given inputs
+
size_t bit_shift = 0;
memory_t inputs = 0;
for (size_t m = 0; m < in_vec.size(); m++, bit_shift++) {
@@ -645,6 +651,9 @@ code_convolutional_trellis::demux_outputs
(memory_t outputs,
std::vector<char>& out_vec)
{
+ // de-mux bits for the given outputs;
+ // copy them into the provided vector;
+
for (size_t m = 0; m < d_n_code_outputs; m++, outputs >>= 1) {
out_vec[m] = (char)(outputs & 1);
}
@@ -654,6 +663,8 @@ memory_t
code_convolutional_trellis::mux_outputs
(const std::vector<char>& out_vec)
{
+ // mux bits for the given outputs
+
size_t bit_shift = 0;
memory_t outputs = 0;
for (size_t m = 0; m < out_vec.size(); m++, bit_shift++) {
@@ -702,9 +713,19 @@ code_convolutional_trellis::encode_lookup
const std::vector<char>& inputs,
memory_t& out_bits)
{
+ if (DO_PRINT_DEBUG_LOOKUP) {
+ std::cout << "e_l: in_st = " << n2bs(state,d_total_n_delays) <<
+ ", in = " << n2bs(mux_inputs(inputs),d_n_code_inputs);
+ }
+
connection_t_ptr t_connection = &(d_trellis[state][mux_inputs(inputs)]);
state = t_connection->d_to_state;
out_bits = t_connection->d_output_bits;
+
+ if (DO_PRINT_DEBUG_LOOKUP) {
+ std::cout << " -> out_st = " << n2bs(state,d_total_n_delays) <<
+ ", out = " << n2bs(out_bits, d_n_code_outputs) << "\n";
+ }
}
void
@@ -713,25 +734,20 @@ code_convolutional_trellis::encode_lookup
const std::vector<char>& inputs,
std::vector<char>& out_bits)
{
+ if (DO_PRINT_DEBUG_LOOKUP) {
+ std::cout << "e_l: in_st = " << n2bs(state,d_total_n_delays) <<
+ ", in = " << n2bs(mux_inputs(inputs),d_n_code_inputs);
+ }
+
connection_t_ptr t_connection = &(d_trellis[state][mux_inputs(inputs)]);
state = t_connection->d_to_state;
demux_outputs (t_connection->d_output_bits, out_bits);
-}
-void
-code_convolutional_trellis::get_termination_inputs
-(memory_t term_start_state,
- size_t bit_num,
- std::vector<char>& inputs)
-{
-#if 1
- // for now, just assign all 0's
- inputs.assign (d_n_code_inputs, 0);
-#else
- for (size_t m = 0; m < d_n_code_inputs; m++) {
- inputs[m] = ((d_term_inputs[term_start_state][m]) >> bit_num) & 1;
+ if (DO_PRINT_DEBUG_LOOKUP) {
+ std::cout << " -> out_st = " << n2bs(state,d_total_n_delays) <<
+ ", out = " << n2bs(t_connection->d_output_bits,
+ d_n_code_outputs) << "\n";
}
-#endif
}
void
@@ -747,7 +763,6 @@ code_convolutional_trellis::create_termination_table
// particular state, listed in order from LSB for the first input
// bit to the MSB for the last input bit.
-#if 0
// create a reverse trellis
// it's temporary, just for doing the termination, so just do it locally
@@ -758,62 +773,214 @@ code_convolutional_trellis::create_termination_table
t_trellis.resize (d_n_states);
// second dimension (one per first dimension) is the number of input
- // combinations
+ // combinations; reserve so that the size() can be used for adding new
for (size_t m = 0; m < d_n_states; m++) {
- t_trellis[m].resize (d_n_input_combinations);
+ t_trellis[m].reserve (d_n_input_combinations);
}
- std::vector<char> outputs (d_n_code_outputs);
- memory_t to_state;
+ std::vector<memory_t> tmp(d_n_memories);
+ demux_state (end_memory_state, tmp);
- // fill in the trellis
+ memory_t to_state, outputs;
+ connection_t t_conn;
- for (memory_t m = 0; m < d_n_states; m++) {
- for (memory_t n = 0; n < d_n_input_combinations; n++) {
- encode_single (m, n, to_state, outputs);
+ // fill in the trellis; discard the outputs
+ // set the trellis node's output bits to the input
- connection_t_ptr t_connection = &(t_trellis[to_state][n]);
- t_connection->d_to_state = m;
-#if 0
- t_connection->d_output_bits.resize (d_n_code_outputs);
- t_connection->d_output_bits = outputs;
-#endif
+ for (size_t m = 0; m < d_n_states; m++) {
+ for (size_t n = 0; n < d_n_input_combinations; n++) {
+ to_state = outputs = 0;
+
+ encode_single ((memory_t) m,
+ (memory_t) n,
+ to_state,
+ outputs);
+
+ t_conn.d_to_state = (memory_t) m;
+ t_conn.d_output_bits = (memory_t) n;
+ t_trellis[to_state].push_back (t_conn);
+
+ if (DO_PRINT_DEBUG_TERM) {
+ std::cout << "[" << n2bs(m,d_total_n_delays) << "][" <<
+ n2bs(n,d_n_code_inputs) << "] -> " <<
+ n2bs(to_state, d_total_n_delays) << "\n";
+ }
}
}
- // create the output vectors
+ if (DO_PRINT_DEBUG_TERM) {
+ std::cout << "Trellis:\n";
- term_input_t t_term_inputs;
- t_term_inputs.resize (d_n_states);
+ for (size_t m = 0; m < d_n_states; m++) {
+ for (size_t n = 0; n < d_n_input_combinations; n++) {
+ std::cout << "[" << n2bs(t_trellis[m][n].d_to_state,
+ d_total_n_delays) << "] : [" <<
+ n2bs(t_trellis[m][n].d_output_bits, d_n_code_inputs) << "] -> " <<
+ n2bs(m, d_total_n_delays) << "\n";
+ }
+ }
+ }
+
+ // need 2 of most buffers: one for the current-in-use variables, and
+ // one for the to-be-determined variables
+
+ // create the term input bit vectors
+
+ term_input_t t_term_inputs[2];
+ t_term_inputs[0].resize (d_n_states);
+ for (size_t m = 0; m < d_n_states; m++) {
+ t_term_inputs[0][m].assign (d_n_code_inputs, 0);
+ }
+ t_term_inputs[1].resize (d_n_states);
for (size_t m = 0; m < d_n_states; m++) {
- t_term_inputs[m].assign (d_n_code_inputs, 0);
+ t_term_inputs[1][m].assign (d_n_code_inputs, 0);
}
+ // create the list of "in-use" states for the current t_term_inputs
- std::vector<memory_t> t_used_states;
- t_used_states.assign (d_n_states, 0);
+ std::vector<size_t> t_used_states_ndx[2];
+ t_used_states_ndx[0].assign (d_n_states, 0);
+ t_used_states_ndx[1].assign (d_n_states, 0);
+
+ std::vector<bool> t_in_use_states[2];
+ t_in_use_states[0].assign (d_n_states, false);
+ t_in_use_states[1].assign (d_n_states, false);
+
+ // termporary 'inputs' place holder, in order to use the class's
+ // built-in inputs demux'er.
+
+ std::vector<char> t_inputs;
+ t_inputs.assign (d_n_code_inputs, 0);
// setup the first state
- t_states[0] = end_memory_state;
- size_t n_states = 1;
+ size_t t_which_input = 0;
+ t_used_states_ndx[t_which_input][0] = (size_t) end_memory_state;
+ t_in_use_states[t_which_input][(size_t) end_memory_state] = true;
+ size_t n_states_used[2];
+ n_states_used[t_which_input] = 1;
+ n_states_used[t_which_input^1] = 0;
- for (size_t m = 0; m < d_total_n_delays; m++) {
- for (size_t n = 0; n < n_states; n++) {
- memory_t t_end_state = t_states[n];
- for (size_t p = 0; p < d_n_code_inputs; p++) {
- connection_t_ptr t_connection = &(t_trellis[t_end_state][p]);
- memory_t_ptr t_mem = &(t_term_inputs[t_end_state][p]);
+ // loop until either the number of states has been reached, or the
+ // number of input term bits (per stream) is too large (in which
+ // case this code can't be terminated ... shouldn't happen, but it's
+ // here just in case.
+ size_t n_input_term_bits = 0;
+ while ((n_states_used[t_which_input] < d_n_states) &
+ (n_input_term_bits < 2*d_total_n_delays)) {
-
+ if (DO_PRINT_DEBUG_TERM) {
+ std::cout << "Starting loop:\n# states in use = " <<
+ n_states_used[t_which_input] << " (of " << d_n_states <<
+ "), # term bits = " << n_input_term_bits << " (of between " <<
+ d_total_n_delays << " and " << (2*d_total_n_delays) << ")\n";
}
+
+ // loop over all current in-use states
+
+ for (size_t m = 0; m < n_states_used[t_which_input]; m++) {
+
+ // get the current state to work with
+
+ size_t t_state_ndx = t_used_states_ndx[t_which_input][m];
+
+ for (size_t p = 0; p < d_n_input_combinations; p++) {
+ memory_t t_from_state = t_trellis[t_state_ndx][p].d_to_state;
+ if (t_in_use_states[t_which_input^1][t_from_state] == false) {
+ // not currently in use; make use of it
+ // if it's already in use, then why duplicate the inputs?
+
+ memory_t t_input = t_trellis[t_state_ndx][p].d_output_bits;
+
+ if (DO_PRINT_DEBUG_TERM) {
+ std::cout << "doing st[" << n2bs(t_state_ndx,d_total_n_delays) <<
+ "] <- [" << n2bs(t_from_state,d_total_n_delays) << "]: in = " <<
+ n2bs(t_input, d_n_code_inputs) << "\n";
+ }
+
+ // copy over the current state's input bits to the 'from'
+ // state's input bits, in the "current" term inputs
+
+ t_term_inputs[t_which_input^1][t_from_state] =
+ t_term_inputs[t_which_input][t_state_ndx];
+
+ // update the copied bits with the current inputs, in the
+ // correct bit position: LSB (&1) -> first input, LSB+1 (&2)
+ // -> second input, etc...
+
+ demux_inputs (t_input, t_inputs);
+
+ for (size_t n = 0; n < d_n_code_inputs; n++) {
+ memory_t t_term = t_term_inputs[t_which_input^1][t_from_state][n];
+ t_term <<= 1;
+ t_term |= ((memory_t)(t_inputs[n] & 1));
+ t_term_inputs[t_which_input^1][t_from_state][n] = t_term;
+ }
+
+ // add this from state to the list of states for the next run
+
+ t_used_states_ndx[t_which_input^1][n_states_used[t_which_input^1]] =
+ t_from_state;
+
+ // and set that this state is in use
+
+ t_in_use_states[t_which_input^1][t_from_state] = true;
+
+ // increase the number of next used states
+
+ n_states_used[t_which_input^1] += 1;
+ }
+ }
+ }
+
+ // update / reset variables for this run-through
+
+ // swap buffers ("^1" is always the next set of buffers)
+
+ t_which_input ^= 1;
+
+ // zero the next # of states used
+
+ n_states_used[t_which_input^1] = 0;
+
+ // reset the next 'in use' buffer
+
+ t_in_use_states[t_which_input^1].assign (d_n_states, false);
+
+ // increase the number of required term bits (per stream)
+
+ n_input_term_bits++;
}
- t_inputs[0] = t_trellis
-#endif
+ if (n_states_used[t_which_input] != d_n_states) {
+ std::cerr << "code_convolutional_trellis::create_termination_table: "
+ "Warning: Unable to determine all required termination inputs for the "
+ "provided termination state. Turning termination off.\n";
+ d_do_termination = false;
+ } else {
+ d_n_bits_to_term = n_input_term_bits;
+
+ d_term_inputs.resize (d_n_states);
+ for (size_t m = 0; m < d_n_states; m++) {
+ d_term_inputs[m].assign (d_n_code_inputs, 0);
+ }
+
+ d_term_inputs = t_term_inputs[t_which_input];
+
+ if (DO_PRINT_DEBUG_TERM_END) {
+ std::cout << "# Term inputs / stream = " << d_n_bits_to_term << "\n";
+
+ for (size_t m = 0; m < d_n_states; m++) {
+ for (size_t n = 0; n < d_n_code_inputs; n++) {
+ std::cout << " [" << n2bs(m,d_total_n_delays) << "][" << n <<
+ "] = " << n2bs(d_term_inputs[m][n], d_n_bits_to_term) << "\n";
+ }
+ }
+ }
+ }
}
void
@@ -909,13 +1076,15 @@ code_convolutional_trellis::encode_single_soai_fb
for (size_t p = 0; p < d_n_memories; p++) {
if (DO_PRINT_DEBUG) {
- std::cout << "m_i[" << p << "] = " << d_memory[p];
+ std::cout << "m_i[" << p << "] = " <<
+ n2bs(d_memory[p], 1+d_n_delays[p]);
}
d_memory[p] >>= 1;
if (DO_PRINT_DEBUG) {
- std::cout << " -> " << d_memory[p] << "\n";
+ std::cout << " >>= 1 -> " <<
+ n2bs(d_memory[p], 1+d_n_delays[p]) << "\n";
}
}
@@ -923,9 +1092,26 @@ code_convolutional_trellis::encode_single_soai_fb
// generators into the correct state's memory.
for (size_t m = 0; m < d_n_code_inputs; m++) {
+ if (DO_PRINT_DEBUG) {
+ std::cout << "in[" << m << "] = " << ((int)d_current_inputs[m]) << "\n";
+ }
+
if (d_current_inputs[m] == 1) {
for (size_t n = 0; n < d_n_code_outputs; n++) {
+ if (DO_PRINT_DEBUG) {
+ size_t p = d_states_ndx[maio(m,n)];
+ std::cout << "d_m[" << p << "] = " <<
+ n2bs(d_memory[p], 1+d_n_delays[p]) <<
+ " ^= c_g[" << maio(m,n) << "] = " <<
+ n2bs(d_code_generators[maio(m,n)],1+d_n_delays[p]);
+ }
+
d_memory[d_states_ndx[maio(m,n)]] ^= d_code_generators[maio(m,n)];
+
+ if (DO_PRINT_DEBUG) {
+ size_t p = d_states_ndx[maio(m,n)];
+ std::cout << " -> " << n2bs(d_memory[p],1+d_n_delays[p]) << "\n";
+ }
}
}
}
@@ -938,7 +1124,18 @@ code_convolutional_trellis::encode_single_soai_fb
// memory(ies) into the correct output bit
for (size_t p = 0; p < d_n_memories; p++) {
- d_current_outputs[d_io_num[p]] ^= ((char)(d_memory[p] & 1));
+ if (DO_PRINT_DEBUG) {
+ std::cout << "c_o[" << d_io_num[p] << "] = " <<
+ n2bs(d_current_outputs[d_io_num[p]],1) << " ^= m[" <<
+ p << "]&1 = " << n2bs(d_memory[p],1);
+ }
+
+ d_ind_outputs[p] = ((char)(d_memory[p] & 1));
+ d_current_outputs[d_io_num[p]] ^= d_ind_outputs[p];
+
+ if (DO_PRINT_DEBUG) {
+ std::cout << " -> " << n2bs(d_current_outputs[d_io_num[p]],1) << "\n";
+ }
}
// now that the output bits are fully created, XOR the FB back
@@ -946,13 +1143,28 @@ code_convolutional_trellis::encode_single_soai_fb
// off already so that it doesn't contribute.
for (size_t p = 0; p < d_n_memories; p++) {
- if (d_current_outputs[d_io_num[p]] == 1) {
+ if (DO_PRINT_DEBUG) {
+ std::cout << "i_o[" << p << "] = " <<
+ n2bs(d_ind_outputs[p],1) << ", m[" << p << "] = " <<
+ n2bs(d_memory[p],1+d_n_delays[p]);
+ }
+
+ if (d_ind_outputs[p] == 1) {
d_memory[p] ^= d_code_feedback[p];
+
+ if (DO_PRINT_DEBUG) {
+ std::cout << " ^= c_f[" << p << "] = " <<
+ n2bs(d_code_feedback[p],1+d_n_delays[p]) <<
+ " -> " << n2bs(d_memory[p],1+d_n_delays[p]);
+ }
+ }
+ if (DO_PRINT_DEBUG) {
+ std::cout << "\n";
}
}
if (DO_PRINT_DEBUG) {
- std::cout << "ending encode_single_soai.\n";
+ std::cout << "ending encode_single_soai_fb.\n";
}
}
diff --git a/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.h b/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.h
index 3aee1a0a6..86165da32 100644
--- a/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.h
+++ b/gr-error-correcting-codes/src/lib/libecc/code_convolutional_trellis.h
@@ -156,16 +156,24 @@ public:
inline const size_t n_code_inputs () {return (d_n_code_inputs);};
inline const size_t n_code_outputs () {return (d_n_code_outputs);};
inline const size_t n_states () {return (d_n_states);};
- inline const size_t n_input_combinations () {return (d_n_input_combinations);};
+ inline const size_t n_input_combinations ()
+ {return (d_n_input_combinations);};
inline const bool do_termination () {return (d_do_termination);};
inline const bool do_feedback () {return (d_do_feedback);};
inline const bool do_streaming () {return (d_do_streaming);};
+ inline const bool do_encode_soai () {return (d_do_encode_soai);};
inline const size_t total_n_delays () {return (d_total_n_delays);};
+ inline const size_t n_bits_to_term () {return (d_n_bits_to_term);};
virtual char sum_bits_mod2 (memory_t in_mem, size_t max_memory);
void get_termination_inputs (memory_t term_start_state,
size_t bit_num,
- std::vector<char>& inputs);
+ std::vector<char>& inputs) {
+ // no error checking ... be careful!
+ for (size_t m = 0; m < d_n_code_inputs; m++) {
+ inputs[m] = ((d_term_inputs[term_start_state][m]) >> bit_num) & 1;
+ }
+ };
// encode_lookup: given the starting state and inputs, return the
// resulting state and output bits. Two versions: the first is
@@ -299,7 +307,6 @@ protected:
bool d_do_streaming, d_do_termination, d_do_feedback, d_do_encode_soai;
// "max_delay" is the max # of delays for all unique generators (ff and fb),
- // needed to determine (e.g.) termination
size_t d_max_delay;
@@ -312,7 +319,7 @@ protected:
// "total_n_delays" is the total # of delays, needed to determine the
// # of states in the decoder
- // "n_states" = (2^n_delays) - 1 .. the number of memory states
+ // "n_states" = (2^total_n_delays) - 1 .. the number of memory states
size_t d_total_n_delays, d_n_states;
@@ -363,11 +370,18 @@ protected:
// first dimension is the memory state #;
// second dimension is the input stream #;
// bits are packed, with the first input being the LSB and the last
- // input being closest to the MSB.
+ // input being farthest away from the LSB.
typedef std::vector<std::vector<memory_t> > term_input_t;
term_input_t d_term_inputs;
+ // "n_bits_to_term" is the number of bits to terminate the trellis
+ // to the desired state, as determined by the termination table.
+ // d_max_delay <= d_n_bits_to_term <= d_total_n_delays
+ // These numbers will vary depending on the realization.
+
+ size_t d_n_bits_to_term;
+
// "inputs" are the current input bits, in the LSB (&1) of each "char"
std::vector<char> d_current_inputs;
@@ -376,6 +390,12 @@ protected:
std::vector<char> d_current_outputs;
+ // "ind_outputs" are the current output bits, in the LSB (&1) of
+ // each "char", for each individual memory's computations; needed
+ // for soai-type feedback only
+
+ std::vector<char> d_ind_outputs;
+
// "trellis" is the single-stage memory state transition ("trellis")
// representation for this code; forward paths only
diff --git a/gr-error-correcting-codes/src/lib/libecc/decoder.cc b/gr-error-correcting-codes/src/lib/libecc/decoder.cc
index 256880e13..ff4889b23 100644
--- a/gr-error-correcting-codes/src/lib/libecc/decoder.cc
+++ b/gr-error-correcting-codes/src/lib/libecc/decoder.cc
@@ -69,7 +69,7 @@ decoder::decode
if (d_out_buf->n_items_left() < n_bits_to_output) {
std::cerr << "encoder::encode: Warning: output buffer size (" <<
- d_out_buf->n_items_left() << "is less than the desired number "
+ d_out_buf->n_items_left() << ") is less than the desired number "
"of output items (" << n_bits_to_output <<
") ... using lower number.\n";
n_bits_to_output = d_out_buf->n_items_left();
@@ -81,7 +81,7 @@ decoder::decode
if (d_in_buf->n_items_left() < n_items_to_input) {
std::cerr << "encoder::encode: Warning: input buffer size (" <<
- d_in_buf->n_items_left() << "is less than the computed number "
+ d_in_buf->n_items_left() << ") is less than the computed number "
"of required input items (" << n_items_to_input <<
") ... using lower number.\n";
n_items_to_input = d_in_buf->n_items_left();
@@ -156,7 +156,7 @@ decoder::decode
if (d_in_buf->n_items_left() < n_items_to_input) {
std::cerr << "encoder::encode: Warning: input buffer size (" <<
- d_in_buf->n_items_left() << "is less than the desired number "
+ d_in_buf->n_items_left() << ") is less than the desired number "
"of input items (" << n_items_to_input <<
") ... using lower number.\n";
n_items_to_input = d_in_buf->n_items_left();
@@ -168,7 +168,7 @@ decoder::decode
if (d_out_buf->n_items_left() < n_bits_to_output) {
std::cerr << "encoder::encode: Warning: output buffer size (" <<
- d_out_buf->n_items_left() << "is less than the computed number "
+ d_out_buf->n_items_left() << ") is less than the computed number "
"of required output items (" << n_bits_to_output <<
") ... using lower number.\n";
n_bits_to_output = d_out_buf->n_items_left();
diff --git a/gr-error-correcting-codes/src/lib/libecc/encoder.cc b/gr-error-correcting-codes/src/lib/libecc/encoder.cc
index 967000fd0..7e7718af1 100644
--- a/gr-error-correcting-codes/src/lib/libecc/encoder.cc
+++ b/gr-error-correcting-codes/src/lib/libecc/encoder.cc
@@ -47,15 +47,18 @@ encoder::encode
size_t n_bits_to_output)
{
if (in_buf == 0) {
- std::cerr << "encoder::encode: Error: input buffer is NULL.\n";
+ std::cerr << "encoder::encode{output}: Error: "
+ "input buffer is NULL.\n";
assert (0);
}
if (out_buf == 0) {
- std::cerr << "encoder::encode: Error: output buffer is NULL.\n";
+ std::cerr << "encoder::encode{output}: Error: "
+ "output buffer is NULL.\n";
assert (0);
}
if (n_bits_to_output == 0) {
- std::cerr << "encoder::encode: Warning: no output bits requested.\n";
+ std::cerr << "encoder::encode{output}: Warning: "
+ "no output bits requested.\n";
return (0);
}
@@ -68,10 +71,10 @@ encoder::encode
// check that there are enough output buffer items
if (d_out_buf->n_items_left() < n_bits_to_output) {
- std::cerr << "encoder::encode: Warning: output buffer size (" <<
- d_out_buf->n_items_left() << "is less than the desired number "
- "of output items (" << n_bits_to_output <<
- ") ... using lower number.\n";
+ std::cerr << "encoder::encode{output}: Warning: "
+ "output buffer size (" << d_out_buf->n_items_left() <<
+ ") is less than the desired number of output items (" <<
+ n_bits_to_output << ") ... using lower number.\n";
n_bits_to_output = d_out_buf->n_items_left();
}
@@ -80,18 +83,26 @@ encoder::encode
size_t n_bits_to_input = compute_n_input_bits (n_bits_to_output);
if (d_in_buf->n_items_left() < n_bits_to_input) {
- std::cerr << "encoder::encode: Warning: input buffer size (" <<
- d_in_buf->n_items_left() << "is less than the computed number "
+ std::cerr << "encoder::encode{output}: Warning: input buffer size (" <<
+ d_in_buf->n_items_left() << ") is less than the computed number "
"of required input items (" << n_bits_to_input <<
") ... using lower number.\n";
n_bits_to_input = d_in_buf->n_items_left();
n_bits_to_output = compute_n_output_bits (n_bits_to_input);
}
+ // set the correct number of I/O bits
+
+ d_n_bits_to_input = n_bits_to_input;
+ d_n_bits_to_output = n_bits_to_output;
+
if (DO_PRINT_DEBUG) {
std::cout <<
- "# output bits = " << n_bits_to_output << "\n"
- "# input bits = " << n_bits_to_input << "\n";
+ "Before Encoding{output}:\n"
+ " # output bits = " << d_n_bits_to_output << "\n"
+ " # input bits = " << d_n_bits_to_input << "\n"
+ " # output bits used = " << d_out_buf->n_items_used() << "\n"
+ " # input bits used = " << d_in_buf->n_items_used() << "\n";
}
// call the private encode function
@@ -100,20 +111,16 @@ encoder::encode
if (DO_PRINT_DEBUG) {
std::cout <<
- "# input bits used = " << d_in_buf->n_items_used() << "\n"
- "# output bits used = " << d_out_buf->n_items_used() << "\n";
+ "After Encoding{output}:\n"
+ " # output bits = " << d_n_bits_to_output << "\n"
+ " # input bits = " << d_n_bits_to_input << "\n"
+ " # output bits used = " << d_out_buf->n_items_used() << "\n"
+ " # input bits used = " << d_in_buf->n_items_used() << "\n";
}
- size_t n_items_used = d_in_buf->n_items_used ();
-
- // clear these buffers, just in case
-
- d_in_buf = 0;
- d_out_buf = 0;
-
// return the actual number of input bits used
- return (n_items_used);
+ return (n_bits_to_input - d_n_bits_to_input);
}
/*
@@ -134,15 +141,15 @@ encoder::encode
code_output_ptr out_buf)
{
if (in_buf == 0) {
- std::cerr << "encoder::encode: Error: input buffer is NULL.\n";
+ std::cerr << "encoder::encode{input}: Error: input buffer is NULL.\n";
assert (0);
}
if (out_buf == 0) {
- std::cerr << "encoder::encode: Error: output buffer is NULL.\n";
+ std::cerr << "encoder::encode{input}: Error: output buffer is NULL.\n";
assert (0);
}
if (n_bits_to_input == 0) {
- std::cerr << "encoder::encode: Warning: no input bits requested.\n";
+ std::cerr << "encoder::encode{input}: Warning: no input bits requested.\n";
return (0);
}
@@ -155,8 +162,8 @@ encoder::encode
// check that there are enough input buffer items
if (d_in_buf->n_items_left() < n_bits_to_input) {
- std::cerr << "encoder::encode: Warning: input buffer size (" <<
- d_in_buf->n_items_left() << "is less than the desired number "
+ std::cerr << "encoder::encode{input}: Warning: input buffer size (" <<
+ d_in_buf->n_items_left() << ") is less than the desired number "
"of input items (" << n_bits_to_input <<
") ... using lower number.\n";
n_bits_to_input = d_in_buf->n_items_left();
@@ -167,18 +174,26 @@ encoder::encode
size_t n_bits_to_output = compute_n_output_bits (n_bits_to_input);
if (d_out_buf->n_items_left() < n_bits_to_output) {
- std::cerr << "encoder::encode: Warning: output buffer size (" <<
- d_out_buf->n_items_left() << "is less than the computed number "
+ std::cerr << "encoder::encode{input}: Warning: output buffer size (" <<
+ d_out_buf->n_items_left() << ") is less than the computed number "
"of required output items (" << n_bits_to_output <<
") ... using lower number.\n";
n_bits_to_output = d_out_buf->n_items_left();
n_bits_to_input = compute_n_input_bits (n_bits_to_output);
}
+ // set the correct number of I/O bits
+
+ d_n_bits_to_input = n_bits_to_input;
+ d_n_bits_to_output = n_bits_to_output;
+
if (DO_PRINT_DEBUG) {
std::cout <<
- "# output bits = " << n_bits_to_output << "\n"
- "# input bits = " << n_bits_to_input << "\n";
+ "Before Encoding{input}:\n"
+ " # output bits = " << d_n_bits_to_output << "\n"
+ " # input bits = " << d_n_bits_to_input << "\n"
+ " # output bits used = " << d_out_buf->n_items_used() << "\n"
+ " # input bits used = " << d_in_buf->n_items_used() << "\n";
}
// call the private encode function
@@ -187,18 +202,14 @@ encoder::encode
if (DO_PRINT_DEBUG) {
std::cout <<
- "# input bits used = " << d_in_buf->n_items_used() << "\n"
- "# output bits used = " << d_out_buf->n_items_used() << "\n";
+ "After Encoding{input}:\n"
+ " # output bits = " << d_n_bits_to_output << "\n"
+ " # input bits = " << d_n_bits_to_input << "\n"
+ " # output bits used = " << d_out_buf->n_items_used() << "\n"
+ " # input bits used = " << d_in_buf->n_items_used() << "\n";
}
- size_t n_items_used = d_out_buf->n_items_used();
-
- // clear these buffers, just in case
-
- d_in_buf = 0;
- d_out_buf = 0;
-
// return the actual number of output bits written
- return (n_items_used);
+ return (n_bits_to_output - d_n_bits_to_output);
}
diff --git a/gr-error-correcting-codes/src/lib/libecc/encoder.h b/gr-error-correcting-codes/src/lib/libecc/encoder.h
index 96ff9f411..b0f1a34bd 100644
--- a/gr-error-correcting-codes/src/lib/libecc/encoder.h
+++ b/gr-error-correcting-codes/src/lib/libecc/encoder.h
@@ -82,7 +82,7 @@ protected:
virtual void encode_private () = 0;
size_t d_block_size_bits, d_n_code_inputs, d_n_code_outputs;
- size_t d_total_n_enc_bits;
+ size_t d_total_n_enc_bits, d_n_bits_to_input, d_n_bits_to_output;
code_input_ptr d_in_buf;
code_output_ptr d_out_buf;
};
diff --git a/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.cc b/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.cc
index a4634503b..b45f4c4aa 100644
--- a/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.cc
+++ b/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.cc
@@ -29,9 +29,9 @@
#include <iostream>
#define DO_TIME_THOUGHPUT 0
+#define DO_PRINT_DEBUG_FSM 0
#include <mld/mld_timer.h>
-//#include <mld/n2bs.h>
void
encoder_convolutional::encoder_convolutional_init
@@ -67,6 +67,7 @@ encoder_convolutional::encoder_convolutional_init
// set the initial FSM state to 'init'
d_fsm_state = fsm_enc_conv_init;
+ d_n_enc_bits = 0;
// create the class block variables
@@ -76,15 +77,17 @@ encoder_convolutional::encoder_convolutional_init
d_do_streaming = d_trellis->do_streaming ();
d_do_termination = d_trellis->do_termination ();
d_total_n_delays = d_trellis->total_n_delays ();
+ d_n_bits_to_term = d_trellis->n_bits_to_term ();
// parse the init state
- memory_t t_mask = (memory_t)((2 << d_total_n_delays) - 1);
+ memory_t t_mask = (memory_t)((1 << d_total_n_delays) - 1);
size_t t_n_states = (1 << d_total_n_delays);
+ memory_t t_start_memory_state = (memory_t) start_memory_state;
- if (start_memory_state & t_mask) {
+ if (t_start_memory_state != (t_start_memory_state & t_mask)) {
std::cout << "encoder_convolutional: Warning: " <<
- "provided end memory state out (" << end_memory_state <<
+ "provided start memory state (" << start_memory_state <<
") is out of the state range [0, " <<
(t_n_states-1) << "]; masking off the unused bits.\n";
@@ -115,8 +118,9 @@ encoder_convolutional::encode_private
// while there are inputs and outputs left to process ...
- while ((d_in_buf->n_items_left() != 0) &
- (d_out_buf->n_items_left() != 0)) {
+ while ((d_n_bits_to_input != 0) |
+ (d_n_bits_to_output != 0) |
+ (d_fsm_state == fsm_enc_conv_init)) {
// jump to the correct state in the fsm
@@ -124,6 +128,9 @@ encoder_convolutional::encode_private
case fsm_enc_conv_init:
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "Starting FSM Doing Init\n";
+
// copy the init states to the current memory
d_memory = d_init_state;
@@ -141,16 +148,24 @@ encoder_convolutional::encode_private
// move to the 'input' state
d_fsm_state = fsm_enc_conv_doing_input;
+
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "FSM State set to Doing Input\n"
+ "Ending FSM Doing Init\n";
+
break;
case fsm_enc_conv_doing_input:
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "Starting FSM Doing Input\n";
+
// working through the trellis section which requires input bits
// from external sources; loop up to the block size (before
// termination bits, if any), counting down the number of
// available input bits.
- encode_loop (d_in_buf->n_items_left(), d_block_size_bits);
+ encode_loop (d_n_bits_to_input, d_block_size_bits);
// finished this loop; check for jumping to the next state
@@ -161,14 +176,28 @@ encoder_convolutional::encode_private
if (d_do_termination == true) {
d_n_enc_bits = 0;
d_fsm_state = fsm_enc_conv_doing_term;
+
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "FSM State set to Doing Term\n";
+
} else {
d_fsm_state = fsm_enc_conv_init;
+
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "FSM State set to Init\n";
}
}
+
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "Ending FSM Doing Input\n";
+
break;
case fsm_enc_conv_doing_term:
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "Starting FSM Doing Term\n";
+
// terminating the trellis, trying to get to a specific state;
// better get here only when do_termination is true, but check
// just in case; lop up to the max memory, counting down the
@@ -180,17 +209,24 @@ encoder_convolutional::encode_private
d_term_state = d_memory;
}
- encode_loop (d_out_buf->n_items_left(), d_total_n_delays);
+ encode_loop (d_n_bits_to_output, d_n_bits_to_term);
// finished this loop; check for jumping to the next state
- if (d_n_enc_bits == d_total_n_delays)
+ if (d_n_enc_bits == d_n_bits_to_term) {
d_fsm_state = fsm_enc_conv_init;
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "FSM State set to Init\n";
+ }
} else {
// should never get here!
assert (0);
}
+
+ if (DO_PRINT_DEBUG_FSM)
+ std::cout << "Ending FSM Doing Term\n";
+
break;
default:
@@ -216,7 +252,7 @@ encoder_convolutional::encode_private
void
encoder_convolutional::encode_loop
-(const size_t& which_counter,
+(size_t& which_counter,
size_t how_many)
{
// generic encode_loop
@@ -254,28 +290,28 @@ encoder_convolutional::compute_n_output_bits
t_n_output_bits = t_n_input_bits = n_input_bits;
if (d_do_termination == true) {
-
// not streaming, doing termination; find the number of bits
// currently available with no required inputs, if any
- size_t n_extra = 0;
+ size_t t_n_blocks, t_n_extra;
+ t_n_blocks = t_n_extra = 0;
+
if (d_fsm_state == fsm_enc_conv_doing_term) {
- n_extra = d_total_n_delays - d_n_enc_bits;
- }
- t_n_output_bits += n_extra;
+ t_n_extra = d_n_bits_to_term - d_n_enc_bits;
+ t_n_blocks = t_n_input_bits / d_block_size_bits;
- // find the number of blocks using just input bits,
- // as well as the number of leftover bits
+ } else {
+ // find the number of blocks which will be completed by the
+ // additional inputs
- size_t t_n_blocks = t_n_input_bits / d_block_size_bits;
- size_t t_leftover_bits = t_n_input_bits % d_block_size_bits;
+ t_n_blocks = (d_n_enc_bits + t_n_input_bits) / d_block_size_bits;
+ }
- // add the number of bits*blocks to the number of output bits, as
- // well as the number of leftover bits which are not a whole block
+ // add the number of term_bits*blocks to the number of output bits
- t_n_output_bits += (t_n_blocks * (d_block_size_bits + d_total_n_delays));
- t_n_output_bits += t_leftover_bits;
+ t_n_output_bits += (t_n_blocks * d_n_bits_to_term);
+ t_n_output_bits += t_n_extra;
}
return (t_n_output_bits);
@@ -295,7 +331,7 @@ encoder_convolutional::compute_n_input_bits
size_t n_extra = 0;
if (d_fsm_state == fsm_enc_conv_doing_term) {
- n_extra = d_total_n_delays - d_n_enc_bits;
+ n_extra = d_n_bits_to_term - d_n_enc_bits;
}
// check to see if this is enough; return 0 if it is.
@@ -306,25 +342,33 @@ encoder_convolutional::compute_n_input_bits
// remove those which require no input
t_n_output_bits -= n_extra;
+ t_n_input_bits -= n_extra;
- // find the number of blocks of data which could be processed
+ // add into the output bits the number of currently encoded input bits
- size_t t_n_output_bits_per_block = d_block_size_bits + d_total_n_delays;
+ if (d_fsm_state == fsm_enc_conv_doing_input)
+ t_n_output_bits += d_n_enc_bits;
- // get the base number of input items required for the given
- // number of blocks to be generated
+ // find the number of blocks of data which will create the
+ // remaining number of output bits, though possibly not the
+ // termination bits of a final block (done later)
+ size_t t_n_output_bits_per_block = d_block_size_bits + d_n_bits_to_term;
size_t t_n_blocks = t_n_output_bits / t_n_output_bits_per_block;
- t_n_input_bits = t_n_blocks * d_block_size_bits;
- // add to that the number of leftover inputs needed to generate
- // the remainder of the outputs within the remaining block, up to
- // the given block size (since anything beyond that within this
- // block requires no inputs)
+ // remove the termination bits from the remaining # of input bits
+
+ t_n_input_bits -= (t_n_blocks * d_n_bits_to_term);
+
+ // do the remaining inputs / outputs create at least 1
+ // block_size_bits (but less than a full block + termination bits)
- size_t t_leftover_bits = t_n_output_bits % t_n_output_bits_per_block;
- t_n_input_bits += ((t_leftover_bits > d_block_size_bits) ?
- d_block_size_bits : t_leftover_bits);
+ t_n_output_bits -= (t_n_blocks * t_n_output_bits_per_block);
+
+ if (t_n_output_bits >= d_block_size_bits) {
+ n_extra = t_n_output_bits - d_block_size_bits;
+ t_n_input_bits -= n_extra;
+ }
}
return (t_n_input_bits);
diff --git a/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.h b/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.h
index 11c8b4e69..908ff416d 100644
--- a/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.h
+++ b/gr-error-correcting-codes/src/lib/libecc/encoder_convolutional.h
@@ -154,8 +154,10 @@ public:
inline const bool do_termination () {return (d_do_termination);};
inline const bool do_feedback () {return (d_trellis->do_feedback());};
+ inline const bool do_encode_soai () {return (d_trellis->do_encode_soai());};
inline const bool do_streaming () {return (d_do_streaming);};
inline const size_t total_n_delays () {return (d_total_n_delays);};
+ inline const size_t n_bits_to_term () {return (d_n_bits_to_term);};
inline const code_convolutional_trellis* trellis() {return (d_trellis);};
protected:
@@ -187,7 +189,7 @@ protected:
int end_memory_state);
virtual void encode_private ();
- virtual void encode_loop (const size_t& which_counter, size_t how_many);
+ virtual void encode_loop (size_t& which_counter, size_t how_many);
inline void get_next_inputs () {
switch (d_fsm_state) {
@@ -206,6 +208,7 @@ protected:
inline virtual void get_next_inputs__input () {
d_in_buf->read_items ((void*)(&(d_current_inputs[0])));
d_in_buf->increment_indices ();
+ d_n_bits_to_input--;
};
inline virtual void get_next_inputs__term () {
@@ -217,6 +220,7 @@ protected:
inline virtual void write_output_bits () {
d_out_buf->write_items ((const void*)(&(d_current_outputs[0])));
d_out_buf->increment_indices ();
+ d_n_bits_to_output--;
};
void get_memory_requirements (size_t m,
@@ -247,6 +251,13 @@ protected:
std::vector<char> d_current_outputs;
+ // "n_bits_to_term" is the number of bits to terminate the trellis
+ // to the desired state, as determined by the termination table.
+ // d_max_delay <= d_n_bits_to_term <= d_total_n_delays
+ // These numbers will vary depending on the realization.
+
+ size_t d_n_bits_to_term;
+
// "trellis" is the code trellis for the given input parameters
code_convolutional_trellis* d_trellis;
diff --git a/gr-error-correcting-codes/src/lib/libecc/mld/n2bs.cc b/gr-error-correcting-codes/src/lib/libecc/mld/n2bs.cc
index e9c25794b..64c0cf16e 100644
--- a/gr-error-correcting-codes/src/lib/libecc/mld/n2bs.cc
+++ b/gr-error-correcting-codes/src/lib/libecc/mld/n2bs.cc
@@ -22,9 +22,8 @@
#include <n2bs.h>
#include <iostream>
-#include "../code_types.h"
-const int g_num_bits_per_byte = 8;
+static const int g_num_bits_per_byte = 8;
std::string DoIt (int64_t number, size_t digits)
{
@@ -39,10 +38,10 @@ std::string DoIt (int64_t number, size_t digits)
return (retVal);
}
-std::string n2bs (u_int8_t number, size_t digits)
+std::string n2bs (int8_t number, size_t digits)
{
- if (digits > (sizeof (u_int8_t) * g_num_bits_per_byte))
- digits = sizeof (u_int8_t);
+ if (digits > (sizeof (int8_t) * g_num_bits_per_byte))
+ digits = sizeof (int8_t);
return DoIt ((int64_t) number, digits);
}
std::string n2bs (int16_t number, size_t digits)
@@ -63,12 +62,10 @@ std::string n2bs (int64_t number, size_t digits)
digits = sizeof (int64_t);
return DoIt (number, digits);
}
-
-
-std::string n2bs (int8_t number, size_t digits)
+std::string n2bs (u_int8_t number, size_t digits)
{
- if (digits > (sizeof (int8_t) * g_num_bits_per_byte))
- digits = sizeof (int8_t);
+ if (digits > (sizeof (u_int8_t) * g_num_bits_per_byte))
+ digits = sizeof (u_int8_t);
return DoIt ((int64_t) number, digits);
}
std::string n2bs (u_int16_t number, size_t digits)
@@ -89,9 +86,3 @@ std::string n2bs (u_int64_t number, size_t digits)
digits = sizeof (u_int64_t);
return DoIt ((int64_t) number, digits);
}
-
-void cout_binary (int number, int digits)
-{
- while (digits-- > 0)
- std::cout << ((number >> digits) & 1);
-}
diff --git a/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.cc b/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.cc
index 7e9e1c37c..bba7dce7c 100644
--- a/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.cc
+++ b/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.cc
@@ -28,22 +28,36 @@
#include <iomanip>
#include <stdio.h>
+#define DO_PRINT_DEBUG 0
+
+// test number counter
+
+static size_t g_t_num = 0;
+
void
qa_encoder_convolutional_ic1_ic1::do_encoder_check
-(int test_n,
+(bool use_encode_in_or_out,
const char** c_in,
const char** c_res,
- int n_input_items,
- int n_output_items,
- int block_size_bits,
- int n_code_inputs,
- int n_code_outputs,
+ const size_t n_io_items,
+ const size_t* n_input_items,
+ const size_t* n_output_items,
+ const size_t block_size_bits,
+ const size_t n_code_inputs,
+ const size_t n_code_outputs,
const int* code_generators,
- const int* code_feedback)
+ const int* code_feedback,
+ const bool do_termination,
+ const size_t start_state,
+ const size_t term_state,
+ const int encode_soai)
{
+ if (DO_PRINT_DEBUG)
+ std::cout << "Starting Test " << g_t_num << "\n";
+
std::vector<int> t_code_generators;
t_code_generators.assign (n_code_inputs * n_code_outputs, 0);
- for (int m = 0; m < n_code_inputs * n_code_outputs; m++)
+ for (size_t m = 0; m < (n_code_inputs * n_code_outputs); m++)
t_code_generators[m] = code_generators[m];
encoder_convolutional* t_encoder;
@@ -51,7 +65,7 @@ qa_encoder_convolutional_ic1_ic1::do_encoder_check
if (code_feedback) {
std::vector<int> t_code_feedback;
t_code_feedback.assign (n_code_inputs * n_code_outputs, 0);
- for (int m = 0; m < n_code_inputs * n_code_outputs; m++)
+ for (size_t m = 0; m < (n_code_inputs * n_code_outputs); m++)
t_code_feedback[m] = code_feedback[m];
t_encoder = new encoder_convolutional
@@ -59,39 +73,87 @@ qa_encoder_convolutional_ic1_ic1::do_encoder_check
n_code_inputs,
n_code_outputs,
t_code_generators,
- t_code_feedback);
+ t_code_feedback,
+ do_termination,
+ start_state,
+ term_state);
} else {
t_encoder = new encoder_convolutional
(block_size_bits,
n_code_inputs,
n_code_outputs,
- t_code_generators);
+ t_code_generators,
+ do_termination,
+ start_state,
+ term_state);
+ }
+
+ size_t t_total_n_input_items = 0;
+ size_t t_total_n_output_items = 0;
+ for (size_t m = 0; m < n_io_items; m++) {
+ t_total_n_input_items += n_input_items[m];
+ t_total_n_output_items += n_output_items[m];
}
code_input_ic1l* t_c_in = new code_input_ic1l (n_code_inputs);
- t_c_in->set_buffer ((void**) c_in, n_input_items);
+ t_c_in->set_buffer ((void**) c_in, t_total_n_input_items);
char** t_out = new char*[n_code_outputs];
- for (int m = 0; m < n_code_outputs; m++) {
- t_out[m] = new char[n_output_items];
+ for (size_t m = 0; m < n_code_outputs; m++) {
+ t_out[m] = new char[t_total_n_output_items];
}
code_output_ic1l* t_c_out = new code_output_ic1l (n_code_outputs);
- t_c_out->set_buffer ((void**) t_out, n_output_items);
+ t_c_out->set_buffer ((void**) t_out, t_total_n_output_items);
- t_encoder->encode (t_c_in, t_c_out, n_output_items);
+ bool t_errors = false;
+
+ for (size_t m = 0; m < n_io_items; m++) {
+ if (use_encode_in_or_out == true) {
+ size_t t_n_output_items_used = t_encoder->encode (t_c_in,
+ n_input_items[m],
+ t_c_out);
+ if (t_n_output_items_used != n_output_items[m]) {
+ std::cout << "Test " << g_t_num << ": Encode[" << m <<
+ "]{input}: Warning: Number of returned output items (" <<
+ t_n_output_items_used << ") is not as expected (" <<
+ n_output_items[m] << ").\n";
+ t_errors = true;
+ }
+ } else {
+ size_t t_n_input_items_used = t_encoder->encode (t_c_in,
+ t_c_out,
+ n_output_items[m]);
+ if (t_n_input_items_used != n_input_items[m]) {
+ std::cout << "Test " << g_t_num << ": Encode[" << m <<
+ "]{output}: Warning: Number of returned output items (" <<
+ t_n_input_items_used << ") is not as expected (" <<
+ n_input_items[m] << ").\n";
+ t_errors = true;
+ }
+ }
+ }
- for (int m = 0; m < n_code_outputs; m++) {
- for (int n = 0; n < n_output_items; n++) {
+ for (size_t m = 0; m < n_code_outputs; m++) {
+ for (size_t n = 0; n < t_total_n_output_items; n++) {
if (c_res[m][n] != t_out[m][n]) {
- std::cout << "Test " << test_n << ": Item [" << m <<
+ std::cout << "Test " << g_t_num << ": Item [" << m <<
"][" << n << "] not equal: des = " << (int)(c_res[m][n]) <<
", act = " << (int)(t_out[m][n]) << "\n";
+ t_errors = true;
}
- CPPUNIT_ASSERT_EQUAL (c_res[m][n], t_out[m][n]);
}
}
+ if (encode_soai != -1) {
+ // verify that the internal realization is correct
+ if (encode_soai != t_encoder->do_encode_soai ()) {
+ t_errors = true;
+ }
+ }
+
+ CPPUNIT_ASSERT_EQUAL (t_errors, false);
+
delete t_c_out;
t_c_out = 0;
delete t_c_in;
@@ -99,203 +161,242 @@ qa_encoder_convolutional_ic1_ic1::do_encoder_check
delete t_encoder;
t_encoder = 0;
- for (int m = 0; m < n_code_outputs; m++) {
+ for (size_t m = 0; m < n_code_outputs; m++) {
delete [] t_out[m];
t_out[m] = 0;
}
delete [] t_out;
t_out = 0;
+
+ // increment the test number
+
+ g_t_num++;
}
+// TESTS 0 through 22 use do_encode_in_or_out as false
+
+static const bool g_do_encode_in_or_out_0_22 = false;
+
// TEST 0
//
-// checking for SOAI realization (implicitely)
-// no feedback, no termination
+// checking for:
+// SIAO realization (implicitely)
+// start state is 0, no feedback, no termination
-const static int t0_code_generator[6] = {1, 0, 5, 0, 1, 6};
-const static int t0_n_code_inputs = 3;
-const static int t0_n_code_outputs = 2;
-const static int t0_n_input_items = 10;
-const static int t0_n_output_items = 10;
+const static int t0_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static size_t t0_encode_soai = 0;
-const static char t0_in_0[t0_n_input_items] =
+const static char t0_in_0[] =
{0, 1, 0, 0, 1, 0, 1, 0, 0, 0};
-const static char t0_in_1[t0_n_input_items] =
+const static char t0_in_1[] =
{0, 1, 0, 0, 0, 1, 1, 0, 0, 0};
-const static char t0_in_2[t0_n_input_items] =
+const static char t0_in_2[] =
{0, 0, 1, 1, 1, 1, 1, 0, 0, 0};
-const static char* t0_in[t0_n_code_inputs] =
+const static char* t0_in[] =
{t0_in_0, t0_in_1, t0_in_2};
-const static char t0_res_0[t0_n_output_items] =
+const static size_t t0_n_input_items = sizeof (t0_in_0);
+const static size_t t0_n_code_inputs = sizeof (t0_in) / sizeof (char*);
+
+const static char t0_res_0[] =
{0, 1, 1, 1, 1, 0, 1, 1, 1, 0};
-const static char t0_res_1[t0_n_output_items] =
+const static char t0_res_1[] =
{0, 1, 0, 1, 0, 1, 1, 0, 1, 0};
-const static char* t0_res[t0_n_code_outputs] =
+const static char* t0_res[] =
{t0_res_0, t0_res_1};
+const static size_t t0_n_output_items = sizeof (t0_res_0);
+const static size_t t0_n_code_outputs = sizeof (t0_res) / sizeof (char*);
+
void
qa_encoder_convolutional_ic1_ic1::t0
()
{
- do_encoder_check (0, (const char**) t0_in, (const char**) t0_res,
- t0_n_input_items, t0_n_output_items, 100,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t0_in, (const char**) t0_res,
+ 1, (const size_t*) &t0_n_input_items,
+ (const size_t*) &t0_n_output_items, 100,
t0_n_code_inputs, t0_n_code_outputs,
- (const int*) t0_code_generator);
+ (const int*) t0_code_generator,
+ 0, true, 0, 0, t0_encode_soai);
}
// TEST 1
//
// checking for SIAO realization (implicitely)
-// no feedback, no termination
+// start state is 0, no feedback, no termination
-const static int t1_code_generator[6] = {1, 0, 0, 1, 5, 6};
-const static int t1_n_code_inputs = 2;
-const static int t1_n_code_outputs = 3;
-const static int t1_n_input_items = 9;
-const static int t1_n_output_items = 9;
+const static int t1_code_generator[] = {1, 0, 0, 1, 5, 6};
+const static size_t t1_encode_soai = 1;
-const static char t1_in_0[t1_n_input_items] =
+const static char t1_in_0[] =
{0, 1, 1, 1, 0, 0, 0, 1, 0};
-const static char t1_in_1[t1_n_input_items] =
+const static char t1_in_1[] =
{0, 0, 0, 0, 0, 1, 1, 1, 0};
-const static char* t1_in[t1_n_code_inputs] =
+const static char* t1_in[] =
{t1_in_0, t1_in_1};
-const static char t1_res_0[t1_n_output_items] =
+const static size_t t1_n_input_items = sizeof (t1_in_0);
+const static size_t t1_n_code_inputs = sizeof (t1_in) / sizeof (char*);
+
+const static char t1_res_0[] =
{0, 1, 1, 1, 0, 0, 0, 1, 0};
-const static char t1_res_1[t1_n_output_items] =
+const static char t1_res_1[] =
{0, 0, 0, 0, 0, 1, 1, 1, 0};
-const static char t1_res_2[t1_n_output_items] =
+const static char t1_res_2[] =
{0, 1, 1, 0, 1, 1, 1, 1, 0};
-const static char* t1_res[t1_n_code_outputs] =
+const static char* t1_res[] =
{t1_res_0, t1_res_1, t1_res_2};
+const static size_t t1_n_output_items = sizeof (t1_res_0);
+const static size_t t1_n_code_outputs = sizeof (t1_res) / sizeof (char*);
+
void
qa_encoder_convolutional_ic1_ic1::t1
()
{
- do_encoder_check (1, (const char**) t1_in, (const char**) t1_res,
- t1_n_input_items, t1_n_output_items, 100,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t1_in, (const char**) t1_res,
+ 1, (const size_t*) &t1_n_input_items,
+ (const size_t*) &t1_n_output_items, 100,
t1_n_code_inputs, t1_n_code_outputs,
- (const int*) t1_code_generator);
+ (const int*) t1_code_generator,
+ 0, true, 0, 0, t1_encode_soai);
}
// TEST 2
//
-// checking for SIAO realization (implicitely)
-// with same feedback, no termination
+// checking for SOAI realization (implicitely)
+// start state is 0, same feedback, no termination
-const static int t2_code_generator[6] = {1, 0, 0, 1, 5, 6};
-const static int t2_code_feedback[6] = {0, 0, 0, 0, 7, 7};
-const static int t2_n_code_inputs = 2;
-const static int t2_n_code_outputs = 3;
-const static int t2_n_input_items = 19;
-const static int t2_n_output_items = 19;
+const static int t2_code_generator[] = {1, 0, 0, 1, 5, 6};
+const static size_t t2_code_feedback[] = {0, 0, 0, 0, 7, 7};
+const static int t2_encode_soai = 1;
-const static char t2_in_0[t2_n_input_items] =
+const static char t2_in_0[] =
{0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0};
-const static char t2_in_1[t2_n_input_items] =
+const static char t2_in_1[] =
{0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0};
-const static char* t2_in[t2_n_code_inputs] =
+const static char* t2_in[] =
{t2_in_0, t2_in_1};
-const static char t2_res_0[t2_n_output_items] =
+const static size_t t2_n_input_items = sizeof (t2_in_0);
+const static size_t t2_n_code_inputs = sizeof (t2_in) / sizeof (char*);
+
+const static char t2_res_0[] =
{0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0};
-const static char t2_res_1[t2_n_output_items] =
+const static char t2_res_1[] =
{0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0};
-const static char t2_res_2[t2_n_output_items] =
+const static char t2_res_2[] =
{0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0};
-const static char* t2_res[t2_n_code_outputs] =
+const static char* t2_res[] =
{t2_res_0, t2_res_1, t2_res_2};
+const static size_t t2_n_output_items = sizeof (t2_res_0);
+const static size_t t2_n_code_outputs = sizeof (t2_res) / sizeof (char*);
+
void
qa_encoder_convolutional_ic1_ic1::t2
()
{
- do_encoder_check (2, (const char**) t2_in, (const char**) t2_res,
- t2_n_input_items, t2_n_output_items, 100,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t2_in, (const char**) t2_res,
+ 1, (const size_t*) &t2_n_input_items,
+ (const size_t*) &t2_n_output_items, 100,
t2_n_code_inputs, t2_n_code_outputs,
(const int*) t2_code_generator,
- (const int*) t2_code_feedback);
+ (const int*) t2_code_feedback,
+ true, 0, 0, t2_encode_soai);
}
// TEST 3
//
-// checking for SOAI realization (implicitely)
-// with same feedback, no termination
+// checking for SIAO realization (implicitely)
+// start state is 0, same feedback, no termination
-const static int t3_code_generator[6] = {1, 0, 5, 0, 1, 6};
-const static int t3_code_feedback[6] = {0, 0, 7, 0, 0, 7};
-const static int t3_n_code_inputs = 3;
-const static int t3_n_code_outputs = 2;
-const static int t3_n_input_items = 17;
-const static int t3_n_output_items = 17;
+const static int t3_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t3_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static int t3_encode_soai = 0;
-const static char t3_in_0[t3_n_input_items] =
+const static char t3_in_0[] =
{0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0};
-const static char t3_in_1[t3_n_input_items] =
+const static char t3_in_1[] =
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-const static char t3_in_2[t3_n_input_items] =
+const static char t3_in_2[] =
{0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0};
-const static char* t3_in[t3_n_code_inputs] =
+const static char* t3_in[] =
{t3_in_0, t3_in_1, t3_in_2};
-const static char t3_res_0[t3_n_output_items] =
+const static size_t t3_n_input_items = sizeof (t3_in_0);
+const static size_t t3_n_code_inputs = sizeof (t3_in) / sizeof (char*);
+
+const static char t3_res_0[] =
{0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0};
-const static char t3_res_1[t3_n_output_items] =
+const static char t3_res_1[] =
{0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0};
-const static char* t3_res[t3_n_code_outputs] =
+const static char* t3_res[] =
{t3_res_0, t3_res_1};
+const static size_t t3_n_output_items = sizeof (t3_res_0);
+const static size_t t3_n_code_outputs = sizeof (t3_res) / sizeof (char*);
+
void
qa_encoder_convolutional_ic1_ic1::t3
()
{
- do_encoder_check (3, (const char**) t3_in, (const char**) t3_res,
- t3_n_input_items, t3_n_output_items, 100,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t3_in, (const char**) t3_res,
+ 1, (const size_t*) &t3_n_input_items,
+ (const size_t*) &t3_n_output_items, 100,
t3_n_code_inputs, t3_n_code_outputs,
(const int*) t3_code_generator,
- (const int*) t3_code_feedback);
+ (const int*) t3_code_feedback,
+ true, 0, 0, t3_encode_soai);
}
// TEST 4
//
// checking for SIAO realization (implicitely),
-// with different feedbacks, no termination
+// start state is 0, different feedbacks, no termination
-const static int t4_code_generator[6] = {1, 4, 0, 3, 1, 6};
-const static int t4_code_feedback[6] = {0, 7, 0, 5, 0, 5};
-const static int t4_n_code_inputs = 2;
-const static int t4_n_code_outputs = 3;
-const static int t4_n_input_items = 20;
-const static int t4_n_output_items = 20;
+const static int t4_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t4_code_feedback[] = {0, 7, 0, 5, 0, 5};
+const static int t4_encode_soai = 0;
-const static char t4_in_0[t4_n_input_items] =
+const static char t4_in_0[] =
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0};
-const static char t4_in_1[t4_n_input_items] =
+const static char t4_in_1[] =
{0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0};
-const static char* t4_in[t4_n_code_inputs] =
+const static char* t4_in[] =
{t4_in_0, t4_in_1};
-const static char t4_res_0[t4_n_output_items] =
+const static size_t t4_n_input_items = sizeof (t4_in_0);
+const static size_t t4_n_code_inputs = sizeof (t4_in) / sizeof (char*);
+
+const static char t4_res_0[] =
{0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0};
-const static char t4_res_1[t4_n_output_items] =
+const static char t4_res_1[] =
{0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0};
-const static char t4_res_2[t4_n_output_items] =
+const static char t4_res_2[] =
{0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0};
-const static char* t4_res[t4_n_code_outputs] =
+const static char* t4_res[] =
{t4_res_0, t4_res_1, t4_res_2};
+const static size_t t4_n_output_items = sizeof (t4_res_0);
+const static size_t t4_n_code_outputs = sizeof (t4_res) / sizeof (char*);
+
void
qa_encoder_convolutional_ic1_ic1::t4
()
{
- do_encoder_check (4, (const char**) t4_in, (const char**) t4_res,
- t4_n_input_items, t4_n_output_items, 100,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t4_in, (const char**) t4_res,
+ 1, (const size_t*) &t4_n_input_items,
+ (const size_t*) &t4_n_output_items, 100,
t4_n_code_inputs, t4_n_code_outputs,
(const int*) t4_code_generator,
- (const int*) t4_code_feedback);
+ (const int*) t4_code_feedback,
+ true, 0, 0, t4_encode_soai);
}
// TEST 5
@@ -303,150 +404,1895 @@ qa_encoder_convolutional_ic1_ic1::t4
// checking for SOAI realization (implicitely),
// with different feedbacks, no termination
-const static int t5_code_generator[6] = {1, 0, 0, 1, 5, 7};
-const static int t5_code_feedback[6] = {0, 0, 0, 0, 7, 3};
-const static int t5_n_code_inputs = 2;
-const static int t5_n_code_outputs = 3;
-const static int t5_n_input_items = 19;
-const static int t5_n_output_items = 19;
+const static int t5_code_generator[] = {1, 0, 1, 4, 3, 6};
+const static int t5_code_feedback[] = {0, 0, 0, 5, 7, 7};
+const static int t5_encode_soai = 1;
-const static char t5_in_0[t5_n_input_items] =
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0};
-const static char t5_in_1[t5_n_input_items] =
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0};
-const static char* t5_in[t5_n_code_inputs] =
- {t5_in_0, t5_in_1};
+const static char t5_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 0, 1};
+const static char t5_in_1[] =
+ {0, 0, 1, 0, 1, 1, 0, 0, 1};
+const static char t5_in_2[] =
+ {0, 0, 0, 1, 0, 0, 0, 0, 1};
+const static char* t5_in[] =
+ {t5_in_0, t5_in_1, t5_in_2};
-const static char t5_res_0[t5_n_output_items] =
- {0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0};
-const static char t5_res_1[t5_n_output_items] =
- {0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0};
-const static char t5_res_2[t5_n_output_items] =
- {0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0};
-const static char* t5_res[t5_n_code_outputs] =
- {t5_res_0, t5_res_1, t5_res_2};
+const static size_t t5_n_input_items = sizeof (t5_in_0);
+const static size_t t5_n_code_inputs = sizeof (t5_in) / sizeof (char*);
+
+const static char t5_res_0[] =
+ {0, 1, 0, 1, 0, 1, 0, 0, 0};
+const static char t5_res_1[] =
+ {0, 0, 1, 1, 1, 1, 0, 0, 1};
+const static char* t5_res[] =
+ {t5_res_0, t5_res_1};
+
+const static size_t t5_n_output_items = sizeof (t5_res_0);
+const static size_t t5_n_code_outputs = sizeof (t5_res) / sizeof (char*);
void
qa_encoder_convolutional_ic1_ic1::t5
()
{
-#if 0
- do_encoder_check (5, (const char**) t5_in, (const char**) t5_res,
- t5_n_input_items, t5_n_output_items, 100,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t5_in, (const char**) t5_res,
+ 1, (const size_t*) &t5_n_input_items,
+ (const size_t*) &t5_n_output_items, 100,
t5_n_code_inputs, t5_n_code_outputs,
- (const int*) t5_code_generator);
-#endif
+ (const int*) t5_code_generator,
+ (const int*) t5_code_feedback, true,
+ 0, 0, t5_encode_soai);
}
// TEST 6
//
-// checking for termination, no feedback
+// checking for:
+// start state is 0, no feedback, termination to 0 state
-const static int t6_code_generator[6] = {1, 0, 5, 0, 1, 6};
-const static int t6_n_code_inputs = 3;
-const static int t6_n_code_outputs = 2;
-const static int t6_n_input_items = 6;
-const static int t6_n_output_items = 8;
+const static int t6_code_generator[] = {1, 0, 5, 0, 1, 6};
-const static char t6_in_0[t6_n_input_items] =
+const static char t6_in_0[] =
{0, 1, 0, 0, 1, 0};
-const static char t6_in_1[t6_n_input_items] =
+const static char t6_in_1[] =
{0, 1, 0, 0, 0, 0};
-const static char t6_in_2[t6_n_input_items] =
+const static char t6_in_2[] =
{0, 0, 1, 1, 1, 0};
-const static char* t6_in[t6_n_code_inputs] =
+const static char* t6_in[] =
{t6_in_0, t6_in_1, t6_in_2};
-const static char t6_res_0[t6_n_output_items] =
+const static size_t t6_n_input_items = sizeof (t6_in_0);
+const static size_t t6_n_code_inputs = sizeof (t6_in) / sizeof (char*);
+
+const static char t6_res_0[] =
{0, 1, 1, 1, 1, 1, 1, 0};
-const static char t6_res_1[t6_n_output_items] =
+const static char t6_res_1[] =
{0, 1, 0, 1, 0, 0, 1, 0};
-const static char* t6_res[t6_n_code_outputs] =
+const static char* t6_res[] =
{t6_res_0, t6_res_1};
+const static size_t t6_n_output_items = sizeof (t6_res_0);
+const static size_t t6_n_code_outputs = sizeof (t6_res) / sizeof (char*);
+
void
qa_encoder_convolutional_ic1_ic1::t6
()
{
- do_encoder_check (6, (const char**) t6_in, (const char**) t6_res,
- t6_n_input_items, t6_n_output_items, 5, t6_n_code_inputs,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t6_in, (const char**) t6_res,
+ 1, (const size_t*) &t6_n_input_items,
+ (const size_t*) &t6_n_output_items, 5, t6_n_code_inputs,
t6_n_code_outputs, (const int*) t6_code_generator);
}
// TEST 7
//
-// checking for termination, with same feedback
+// checking for:
+// start state is 0, same feedback, termination to 0 state
+// # of termination bits = 2
-const static int t7_code_generator[6] = {1, 0, 5, 0, 1, 6};
-const static int t7_code_feedback[6] = {0, 0, 7, 0, 0, 7};
-const static int t7_n_code_inputs = 3;
-const static int t7_n_code_outputs = 2;
-const static int t7_n_input_items = 17;
-const static int t7_n_output_items = 17;
+const static int t7_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t7_code_feedback[] = {0, 0, 7, 0, 0, 7};
-const static char t7_in_0[t7_n_input_items] =
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0};
-const static char t7_in_1[t7_n_input_items] =
- {0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-const static char t7_in_2[t7_n_input_items] =
- {0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0};
-const static char* t7_in[t7_n_code_inputs] =
+const static char t7_in_0[] =
+ {0, 1, 1, 0, 0, 0, 0};
+const static char t7_in_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char t7_in_2[] =
+ {0, 0, 0, 0, 1, 0, 1};
+const static char* t7_in[] =
{t7_in_0, t7_in_1, t7_in_2};
-const static char t7_res_0[t7_n_output_items] =
- {0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0};
-const static char t7_res_1[t7_n_output_items] =
- {0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0};
-const static char* t7_res[t7_n_code_outputs] =
+const static size_t t7_n_input_items = sizeof (t7_in_0);
+const static size_t t7_n_code_inputs = sizeof (t7_in) / sizeof (char*);
+
+const static char t7_res_0[] =
+ {0, 1, 1, 0, 1, 0, 1, 0, 1};
+const static char t7_res_1[] =
+ {0, 1, 0, 1, 0, 1, 1, 0, 0};
+const static char* t7_res[] =
{t7_res_0, t7_res_1};
+const static size_t t7_n_output_items = sizeof (t7_res_0);
+const static size_t t7_n_code_outputs = sizeof (t7_res) / sizeof (char*);
+
void
qa_encoder_convolutional_ic1_ic1::t7
()
{
-#if 0
- do_encoder_check (7, (const char**) t7_in, (const char**) t7_res,
- t7_n_input_items, t7_n_output_items, 5, t7_n_code_inputs,
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t7_in, (const char**) t7_res,
+ 1, (const size_t*) &t7_n_input_items,
+ (const size_t*) &t7_n_output_items, 5, t7_n_code_inputs,
t7_n_code_outputs, (const int*) t7_code_generator,
(const int*) t7_code_feedback);
-#endif
}
// TEST 8
//
-// checking for termination, with different feedback
+// checking for:
+// state state is 0, different feedbacks, termination to 0 state
+// # of term bits will be 4
+
+const static int t8_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t8_code_feedback[] = {0, 5, 0, 7, 0, 7};
+
+const static char t8_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 1, 1};
+const static char t8_in_1[] =
+ {0, 0, 0, 1, 1, 1, 0, 1, 0};
+const static char* t8_in[] =
+ {t8_in_0, t8_in_1};
+
+const static size_t t8_n_input_items = sizeof (t8_in_0);
+const static size_t t8_n_code_inputs = sizeof (t8_in) / sizeof (char*);
+
+const static char t8_res_0[] =
+ {0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1};
+const static char t8_res_1[] =
+ {0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0};
+const static char t8_res_2[] =
+ {0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0};
+const static char* t8_res[] =
+ {t8_res_0, t8_res_1, t8_res_2};
+
+const static size_t t8_n_output_items = sizeof (t8_res_0);
+const static size_t t8_n_code_outputs = sizeof (t8_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t8
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t8_in, (const char**) t8_res,
+ 1, (const size_t*) &t8_n_input_items,
+ (const size_t*) &t8_n_output_items, 6, t8_n_code_inputs,
+ t8_n_code_outputs, (const int*) t8_code_generator,
+ (const int*) t8_code_feedback);
+}
+
+// TEST 9
+//
+// checking for:
+// start state is 0, different feedbacks, termination to non-0 state
+// # of term bits will be 2
+
+const static int t9_code_generator[] = {1, 0, 1, 4, 3, 6};
+const static int t9_code_feedback[] = {0, 0, 0, 5, 7, 7};
+const static size_t t9_term_state = 4;
+
+const static char t9_in_0[] =
+ {0, 1, 0, 0, 0, 0, 1};
+const static char t9_in_1[] =
+ {0, 0, 1, 0, 1, 0, 1};
+const static char t9_in_2[] =
+ {0, 0, 0, 1, 0, 0, 1};
+const static char* t9_in[] =
+ {t9_in_0, t9_in_1, t9_in_2};
+
+const static size_t t9_n_input_items = sizeof (t9_in_0);
+const static size_t t9_n_code_inputs = sizeof (t9_in) / sizeof (char*);
+
+const static char t9_res_0[] =
+ {0, 1, 0, 1, 0, 1, 1, 0, 0};
+const static char t9_res_1[] =
+ {0, 0, 1, 1, 1, 1, 1, 0, 1};
+const static char* t9_res[] =
+ {t9_res_0, t9_res_1};
+
+const static size_t t9_n_output_items = sizeof (t9_res_0);
+const static size_t t9_n_code_outputs = sizeof (t9_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t9
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t9_in, (const char**) t9_res,
+ 1, (const size_t*) &t9_n_input_items,
+ (const size_t*) &t9_n_output_items, 5, t9_n_code_inputs,
+ t9_n_code_outputs, (const int*) t9_code_generator,
+ (const int*) t9_code_feedback, true, 0, t9_term_state);
+}
+
+// TEST 10
+//
+// checking for termination to non-0 state, no feedback
+
+const static int t10_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t10_term_state = 2;
+
+const static char t10_in_0[] =
+ {0, 1, 0, 1, 0, 0, 1, 1};
+const static char t10_in_1[] =
+ {0, 1, 0, 0, 1, 0, 1, 1};
+const static char t10_in_2[] =
+ {0, 1, 0, 1, 1, 0, 0, 1};
+const static char* t10_in[] =
+ {t10_in_0, t10_in_1, t10_in_2};
+
+const static size_t t10_n_input_items = sizeof (t10_in_0);
+const static size_t t10_n_code_inputs = sizeof (t10_in) / sizeof (char*);
+
+const static char t10_res_0[] =
+ {0, 0, 1, 0, 0, 0, 1, 0, 1, 0};
+const static char t10_res_1[] =
+ {0, 1, 1, 1, 0, 0, 0, 0, 1, 1};
+const static char* t10_res[] =
+ {t10_res_0, t10_res_1};
+
+const static size_t t10_n_output_items = sizeof (t10_res_0);
+const static size_t t10_n_code_outputs = sizeof (t10_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t10
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t10_in, (const char**) t10_res,
+ 1, (const size_t*) &t10_n_input_items,
+ (const size_t*) &t10_n_output_items, 5,
+ t10_n_code_inputs, t10_n_code_outputs,
+ (const int*) t10_code_generator,
+ 0, true, 0, t10_term_state);
+}
+
+// TEST 11
+//
+// checking for:
+// start state is not 0, no feedback, terminating to 0 state
+
+const static int t11_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t11_start_state = 1;
+
+const static char t11_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0};
+const static char t11_in_1[] =
+ {0, 0, 1, 0, 0, 1, 0};
+const static char t11_in_2[] =
+ {0, 1, 1, 1, 0, 1, 1};
+const static char* t11_in[] =
+ {t11_in_0, t11_in_1, t11_in_2};
+
+const static size_t t11_n_input_items = sizeof (t11_in_0);
+const static size_t t11_n_code_inputs = sizeof (t11_in) / sizeof (char*);
+
+const static char t11_res_0[] =
+ {1, 0, 0, 0, 1, 0, 0, 1, 0};
+const static char t11_res_1[] =
+ {1, 1, 0, 0, 0, 1, 0, 0, 0};
+const static char* t11_res[] =
+ {t11_res_0, t11_res_1};
+
+const static size_t t11_n_output_items = sizeof (t11_res_0);
+const static size_t t11_n_code_outputs = sizeof (t11_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t11
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t11_in, (const char**) t11_res,
+ 1, (const size_t*) &t11_n_input_items,
+ (const size_t*) &t11_n_output_items, 5,
+ t11_n_code_inputs, t11_n_code_outputs,
+ (const int*) t11_code_generator,
+ 0, true, t11_start_state);
+}
+
+// TEST 12
+//
+// checking for:
+// start state is not 0, no feedback, terminating to non-0 state
+
+const static int t12_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t12_start_state = 2;
+const static size_t t12_term_state = 2;
+
+const static char t12_in_0[] =
+ {0, 1, 1, 1, 0, 1, 0};
+const static char t12_in_1[] =
+ {0, 1, 0, 0, 0, 0, 1};
+const static char t12_in_2[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char* t12_in[] =
+ {t12_in_0, t12_in_1, t12_in_2};
+
+const static size_t t12_n_input_items = sizeof (t12_in_0);
+const static size_t t12_n_code_inputs = sizeof (t12_in) / sizeof (char*);
+
+const static char t12_res_0[] =
+ {0, 0, 1, 0, 1, 0, 1, 1, 1};
+const static char t12_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 1, 1};
+const static char* t12_res[] =
+ {t12_res_0, t12_res_1};
+
+const static size_t t12_n_output_items = sizeof (t12_res_0);
+const static size_t t12_n_code_outputs = sizeof (t12_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t12
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t12_in, (const char**) t12_res,
+ 1, (const size_t*) &t12_n_input_items,
+ (const size_t*) &t12_n_output_items, 5, t12_n_code_inputs,
+ t12_n_code_outputs, (const int*) t12_code_generator,
+ 0, true, t12_start_state, t12_term_state);
+}
+
+// TEST 13
+//
+// checking for:
+// start state is not 0, any feedback, termination to 0 state
+
+const static int t13_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t13_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static size_t t13_start_state = 2;
+const static size_t t13_term_state = 0;
+
+const static char t13_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0};
+const static char t13_in_1[] =
+ {0, 0, 1, 1, 0, 1, 0};
+const static char t13_in_2[] =
+ {0, 0, 0, 0, 1, 0, 0};
+const static char* t13_in[] =
+ {t13_in_0, t13_in_1, t13_in_2};
+
+const static size_t t13_n_input_items = sizeof (t13_in_0);
+const static size_t t13_n_code_inputs = sizeof (t13_in) / sizeof (char*);
+
+const static char t13_res_0[] =
+ {0, 0, 1, 0, 0, 1, 0, 1, 1};
+const static char t13_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 0, 1};
+const static char* t13_res[] =
+ {t13_res_0, t13_res_1};
+
+const static size_t t13_n_output_items = sizeof (t13_res_0);
+const static size_t t13_n_code_outputs = sizeof (t13_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t13
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t13_in, (const char**) t13_res,
+ 1, (const size_t*) &t13_n_input_items,
+ (const size_t*) &t13_n_output_items, 5,
+ t13_n_code_inputs, t13_n_code_outputs,
+ (const int*) t13_code_generator,
+ (const int*) t13_code_feedback,
+ true, t13_start_state, t13_term_state);
+}
+
+// TEST 14
+//
+// checking for:
+// start state is not 0, any feedback, termination to non-zero state
+
+const static int t14_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t14_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static size_t t14_start_state = 1;
+const static size_t t14_term_state = 2;
+
+const static char t14_in_0[] =
+ {0, 1, 0, 1, 0, 1, 0};
+const static char t14_in_1[] =
+ {0, 0, 0, 0, 1, 1, 0};
+const static char t14_in_2[] =
+ {0, 1, 0, 0, 0, 1, 1};
+const static char* t14_in[] =
+ {t14_in_0, t14_in_1, t14_in_2};
+
+const static size_t t14_n_input_items = sizeof (t14_in_0);
+const static size_t t14_n_code_inputs = sizeof (t14_in) / sizeof (char*);
+
+const static char t14_res_0[] =
+ {1, 1, 1, 1, 1, 0, 1, 1, 1};
+const static char t14_res_1[] =
+ {1, 0, 0, 1, 0, 0, 0, 0, 1};
+const static char* t14_res[] =
+ {t14_res_0, t14_res_1};
+
+const static size_t t14_n_output_items = sizeof (t14_res_0);
+const static size_t t14_n_code_outputs = sizeof (t14_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t14
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t14_in, (const char**) t14_res,
+ 1, (const size_t*) &t14_n_input_items,
+ (const size_t*) &t14_n_output_items, 5,
+ t14_n_code_inputs, t14_n_code_outputs,
+ (const int*) t14_code_generator,
+ (const int*) t14_code_feedback,
+ true, t14_start_state, t14_term_state);
+}
+
+// TEST 15
+//
+// checking for:
+// no feedback, block coding but no termination
+
+const static int t15_code_generator[] = {1, 0, 3, 0, 1, 6};
+
+const static char t15_in_0[] =
+ {0, 1, 0, 1, 0, 0, 1, 1};
+const static char t15_in_1[] =
+ {0, 1, 0, 0, 1, 0, 1, 1};
+const static char t15_in_2[] =
+ {0, 1, 0, 1, 1, 0, 0, 1};
+const static char* t15_in[] =
+ {t15_in_0, t15_in_1, t15_in_2};
+
+const static size_t t15_n_input_items = sizeof (t15_in_0);
+const static size_t t15_n_code_inputs = sizeof (t15_in) / sizeof (char*);
+
+const static char t15_res_0[] =
+ {0, 0, 1, 0, 0, 0, 1, 0};
+const static char t15_res_1[] =
+ {0, 1, 1, 1, 0, 0, 1, 1};
+const static char* t15_res[] =
+ {t15_res_0, t15_res_1};
+
+const static size_t t15_n_output_items = sizeof (t15_res_0);
+const static size_t t15_n_code_outputs = sizeof (t15_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t15
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t15_in, (const char**) t15_res,
+ 1, (const size_t*) &t15_n_input_items,
+ (const size_t*) &t15_n_output_items, 5,
+ t15_n_code_inputs, t15_n_code_outputs,
+ (const int*) t15_code_generator, 0, false);
+}
+
+// TEST 16
+//
+// checking for:
+// start state is 0, same feedback, block but no termination
+
+const static int t16_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t16_code_feedback[] = {0, 0, 7, 0, 0, 7};
+
+const static char t16_in_0[] =
+ {0, 1, 1, 0, 0, 0, 0};
+const static char t16_in_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char t16_in_2[] =
+ {0, 0, 0, 0, 1, 0, 1};
+const static char* t16_in[] =
+ {t16_in_0, t16_in_1, t16_in_2};
+
+const static size_t t16_n_input_items = sizeof (t16_in_0);
+const static size_t t16_n_code_inputs = sizeof (t16_in) / sizeof (char*);
+
+const static char t16_res_0[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char t16_res_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char* t16_res[] =
+ {t16_res_0, t16_res_1};
+
+const static size_t t16_n_output_items = sizeof (t16_res_0);
+const static size_t t16_n_code_outputs = sizeof (t16_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t16
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t16_in, (const char**) t16_res,
+ 1, (const size_t*) &t16_n_input_items,
+ (const size_t*) &t16_n_output_items, 5, t16_n_code_inputs,
+ t16_n_code_outputs, (const int*) t16_code_generator,
+ (const int*) t16_code_feedback, false);
+}
+
+// TEST 17
+//
+// checking for:
+// state state is 0, different feedbacks, block but no termination
+
+const static int t17_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t17_code_feedback[] = {0, 5, 0, 7, 0, 7};
+
+const static char t17_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 1, 1};
+const static char t17_in_1[] =
+ {0, 0, 0, 1, 1, 1, 0, 1, 0};
+const static char* t17_in[] =
+ {t17_in_0, t17_in_1};
+
+const static size_t t17_n_input_items = sizeof (t17_in_0);
+const static size_t t17_n_code_inputs = sizeof (t17_in) / sizeof (char*);
+
+const static char t17_res_0[] =
+ {0, 1, 0, 0, 0, 0, 0, 1, 1};
+const static char t17_res_1[] =
+ {0, 0, 0, 1, 1, 0, 0, 1, 0};
+const static char t17_res_2[] =
+ {0, 1, 0, 0, 1, 0, 0, 1, 0};
+const static char* t17_res[] =
+ {t17_res_0, t17_res_1, t17_res_2};
+
+const static size_t t17_n_output_items = sizeof (t17_res_0);
+const static size_t t17_n_code_outputs = sizeof (t17_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t17
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t17_in, (const char**) t17_res,
+ 1, (const size_t*) &t17_n_input_items,
+ (const size_t*) &t17_n_output_items, 6, t17_n_code_inputs,
+ t17_n_code_outputs, (const int*) t17_code_generator,
+ (const int*) t17_code_feedback, false);
+}
+
+// TEST 18
+//
+// checking for:
+// start state is not 0, no feedback, terminating to non-0 state
+// multi-encode, stop output before term bits
+
+const static int t18_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t18_start_state = 2;
+const static size_t t18_term_state = 2;
+
+const static char t18_in_0[] =
+ {0, 1, 1, 1, 0, 1, 0};
+const static char t18_in_1[] =
+ {0, 1, 0, 0, 0, 0, 1};
+const static char t18_in_2[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char* t18_in[] =
+ {t18_in_0, t18_in_1, t18_in_2};
+
+const static size_t t18_n_input_items[] = {3, 2, 2};
+const static size_t t18_n_io_items = (sizeof (t18_n_input_items) /
+ sizeof (size_t));
+const static size_t t18_n_code_inputs = sizeof (t18_in) / sizeof (char*);
+
+const static char t18_res_0[] =
+ {0, 0, 1, 0, 1, 0, 1, 1, 1};
+const static char t18_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 1, 1};
+const static char* t18_res[] =
+ {t18_res_0, t18_res_1};
+
+const static size_t t18_n_output_items[] = {3, 2, 4};
+const static size_t t18_n_code_outputs = sizeof (t18_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t18
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t18_in, (const char**) t18_res,
+ t18_n_io_items, (const size_t*) t18_n_input_items,
+ (const size_t*) t18_n_output_items, 5, t18_n_code_inputs,
+ t18_n_code_outputs, (const int*) t18_code_generator,
+ 0, true, t18_start_state, t18_term_state);
+}
+
+// TEST 19
+//
+// checking for:
+// start state is not 0, any feedback, termination to non-zero state
+// multi-encode, stop output in the middle of term bits
+
+const static int t19_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t19_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static size_t t19_start_state = 1;
+const static size_t t19_term_state = 2;
+
+const static char t19_in_0[] =
+ {0, 1, 0, 1, 0, 1, 0};
+const static char t19_in_1[] =
+ {0, 0, 0, 0, 1, 1, 0};
+const static char t19_in_2[] =
+ {0, 1, 0, 0, 0, 1, 1};
+const static char* t19_in[] =
+ {t19_in_0, t19_in_1, t19_in_2};
+
+const static size_t t19_n_input_items[] = {2, 2, 1, 1, 1};
+const static size_t t19_n_io_items = (sizeof (t19_n_input_items) /
+ sizeof (size_t));
+const static size_t t19_n_code_inputs = sizeof (t19_in) / sizeof (char*);
+
+const static char t19_res_0[] =
+ {1, 1, 1, 1, 1, 0, 1, 1, 1};
+const static char t19_res_1[] =
+ {1, 0, 0, 1, 0, 0, 0, 0, 1};
+const static char* t19_res[] =
+ {t19_res_0, t19_res_1};
+
+const static size_t t19_n_output_items[] = {2, 2, 2, 2, 1};
+const static size_t t19_n_code_outputs = sizeof (t19_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t19
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t19_in, (const char**) t19_res,
+ 1, (const size_t*) &t19_n_input_items,
+ (const size_t*) &t19_n_output_items, 5,
+ t19_n_code_inputs, t19_n_code_outputs,
+ (const int*) t19_code_generator,
+ (const int*) t19_code_feedback,
+ true, t19_start_state, t19_term_state);
+}
+
+// TEST 20
+//
+// checking for:
+// no feedback, block coding but no termination
+// multi-encode
+
+const static int t20_code_generator[] = {1, 0, 3, 0, 1, 6};
+
+const static char t20_in_0[] =
+ {0, 1, 0, 1, 0, 0, 1, 1};
+const static char t20_in_1[] =
+ {0, 1, 0, 0, 1, 0, 1, 1};
+const static char t20_in_2[] =
+ {0, 1, 0, 1, 1, 0, 0, 1};
+const static char* t20_in[] =
+ {t20_in_0, t20_in_1, t20_in_2};
+
+const static size_t t20_n_input_items[] = {2, 2, 2, 2};
+const static size_t t20_n_n_input_items = (sizeof (t20_n_input_items) /
+ sizeof (size_t));
+const static size_t t20_n_code_inputs = sizeof (t20_in) / sizeof (char*);
+
+const static char t20_res_0[] =
+ {0, 0, 1, 0, 0, 0, 1, 0};
+const static char t20_res_1[] =
+ {0, 1, 1, 1, 0, 0, 1, 1};
+const static char* t20_res[] =
+ {t20_res_0, t20_res_1};
+
+const static size_t t20_n_output_items[] = {2, 2, 2, 2};
+const static size_t t20_n_code_outputs = sizeof (t20_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t20
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t20_in, (const char**) t20_res,
+ t20_n_n_input_items, (const size_t*) t20_n_input_items,
+ (const size_t*) t20_n_output_items, 5,
+ t20_n_code_inputs, t20_n_code_outputs,
+ (const int*) t20_code_generator, 0, false);
+}
+
+// TEST 21
+//
+// checking for:
+// start state is 0, same feedback, block but no termination
+// multi-encode
+
+const static int t21_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t21_code_feedback[] = {0, 0, 7, 0, 0, 7};
+
+const static char t21_in_0[] =
+ {0, 1, 1, 0, 0, 0, 0};
+const static char t21_in_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char t21_in_2[] =
+ {0, 0, 0, 0, 1, 0, 1};
+const static char* t21_in[] =
+ {t21_in_0, t21_in_1, t21_in_2};
+
+const static size_t t21_n_input_items[] = {5, 1, 1};
+const static size_t t21_n_n_input_items = (sizeof (t21_n_input_items) /
+ sizeof (size_t));
+const static size_t t21_n_code_inputs = sizeof (t21_in) / sizeof (char*);
+
+const static char t21_res_0[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char t21_res_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char* t21_res[] =
+ {t21_res_0, t21_res_1};
+
+const static size_t t21_n_output_items[] = {5, 1, 1};
+const static size_t t21_n_code_outputs = sizeof (t21_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t21
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t21_in, (const char**) t21_res,
+ t21_n_n_input_items, (const size_t*) t21_n_input_items,
+ (const size_t*) t21_n_output_items, 5, t21_n_code_inputs,
+ t21_n_code_outputs, (const int*) t21_code_generator,
+ (const int*) t21_code_feedback, false);
+}
+
+// TEST 22
+//
+// checking for:
+// state state is 0, different feedbacks, block but no termination
+// multi-encode
+
+const static int t22_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t22_code_feedback[] = {0, 5, 0, 7, 0, 7};
+
+const static char t22_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 1, 1};
+const static char t22_in_1[] =
+ {0, 0, 0, 1, 1, 1, 0, 1, 0};
+const static char* t22_in[] =
+ {t22_in_0, t22_in_1};
+
+const static size_t t22_n_input_items[] = {5, 4};
+const static size_t t22_n_n_input_items = (sizeof (t22_n_input_items) /
+ sizeof (size_t));
+const static size_t t22_n_code_inputs = sizeof (t22_in) / sizeof (char*);
+
+const static char t22_res_0[] =
+ {0, 1, 0, 0, 0, 0, 0, 1, 1};
+const static char t22_res_1[] =
+ {0, 0, 0, 1, 1, 0, 0, 1, 0};
+const static char t22_res_2[] =
+ {0, 1, 0, 0, 1, 0, 0, 1, 0};
+const static char* t22_res[] =
+ {t22_res_0, t22_res_1, t22_res_2};
+
+const static size_t t22_n_output_items[] = {5, 4};
+const static size_t t22_n_code_outputs = sizeof (t22_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t22
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_0_22,
+ (const char**) t22_in, (const char**) t22_res,
+ t22_n_n_input_items, (const size_t*) t22_n_input_items,
+ (const size_t*) t22_n_output_items, 6, t22_n_code_inputs,
+ t22_n_code_outputs, (const int*) t22_code_generator,
+ (const int*) t22_code_feedback, false);
+}
+
+// TESTS 23 through 45 use do_encode_in_or_out as true
+
+static const bool g_do_encode_in_or_out_23_45 = true;
+
+// TEST 23
+//
+// checking for:
+// SIAO realization (implicitely)
+// start state is 0, no feedback, no termination
+
+const static int t23_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static size_t t23_encode_soai = 0;
+
+const static char t23_in_0[] =
+ {0, 1, 0, 0, 1, 0, 1, 0, 0, 0};
+const static char t23_in_1[] =
+ {0, 1, 0, 0, 0, 1, 1, 0, 0, 0};
+const static char t23_in_2[] =
+ {0, 0, 1, 1, 1, 1, 1, 0, 0, 0};
+const static char* t23_in[] =
+ {t23_in_0, t23_in_1, t23_in_2};
+
+const static size_t t23_n_input_items = sizeof (t23_in_0);
+const static size_t t23_n_code_inputs = sizeof (t23_in) / sizeof (char*);
+
+const static char t23_res_0[] =
+ {0, 1, 1, 1, 1, 0, 1, 1, 1, 0};
+const static char t23_res_1[] =
+ {0, 1, 0, 1, 0, 1, 1, 0, 1, 0};
+const static char* t23_res[] =
+ {t23_res_0, t23_res_1};
+
+const static size_t t23_n_output_items = sizeof (t23_res_0);
+const static size_t t23_n_code_outputs = sizeof (t23_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t23
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t23_in, (const char**) t23_res,
+ 1, (const size_t*) &t23_n_input_items,
+ (const size_t*) &t23_n_output_items, 100,
+ t23_n_code_inputs, t23_n_code_outputs,
+ (const int*) t23_code_generator,
+ 0, true, 0, 0, t23_encode_soai);
+}
+
+// TEST 24
+//
+// checking for SIAO realization (implicitely)
+// start state is 0, no feedback, no termination
+
+const static int t24_code_generator[] = {1, 0, 0, 1, 5, 6};
+const static size_t t24_encode_soai = 1;
+
+const static char t24_in_0[] =
+ {0, 1, 1, 1, 0, 0, 0, 1, 0};
+const static char t24_in_1[] =
+ {0, 0, 0, 0, 0, 1, 1, 1, 0};
+const static char* t24_in[] =
+ {t24_in_0, t24_in_1};
+
+const static size_t t24_n_input_items = sizeof (t24_in_0);
+const static size_t t24_n_code_inputs = sizeof (t24_in) / sizeof (char*);
+
+const static char t24_res_0[] =
+ {0, 1, 1, 1, 0, 0, 0, 1, 0};
+const static char t24_res_1[] =
+ {0, 0, 0, 0, 0, 1, 1, 1, 0};
+const static char t24_res_2[] =
+ {0, 1, 1, 0, 1, 1, 1, 1, 0};
+const static char* t24_res[] =
+ {t24_res_0, t24_res_1, t24_res_2};
+
+const static size_t t24_n_output_items = sizeof (t24_res_0);
+const static size_t t24_n_code_outputs = sizeof (t24_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t24
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t24_in, (const char**) t24_res,
+ 1, (const size_t*) &t24_n_input_items,
+ (const size_t*) &t24_n_output_items, 100,
+ t24_n_code_inputs, t24_n_code_outputs,
+ (const int*) t24_code_generator,
+ 0, true, 0, 0, t24_encode_soai);
+}
+
+// TEST 25
+//
+// checking for SOAI realization (implicitely)
+// start state is 0, same feedback, no termination
+
+const static int t25_code_generator[] = {1, 0, 0, 1, 5, 6};
+const static size_t t25_code_feedback[] = {0, 0, 0, 0, 7, 7};
+const static int t25_encode_soai = 1;
+
+const static char t25_in_0[] =
+ {0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0};
+const static char t25_in_1[] =
+ {0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0};
+const static char* t25_in[] =
+ {t25_in_0, t25_in_1};
+
+const static size_t t25_n_input_items = sizeof (t25_in_0);
+const static size_t t25_n_code_inputs = sizeof (t25_in) / sizeof (char*);
+
+const static char t25_res_0[] =
+ {0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0};
+const static char t25_res_1[] =
+ {0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0};
+const static char t25_res_2[] =
+ {0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0};
+const static char* t25_res[] =
+ {t25_res_0, t25_res_1, t25_res_2};
+
+const static size_t t25_n_output_items = sizeof (t25_res_0);
+const static size_t t25_n_code_outputs = sizeof (t25_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t25
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t25_in, (const char**) t25_res,
+ 1, (const size_t*) &t25_n_input_items,
+ (const size_t*) &t25_n_output_items, 100,
+ t25_n_code_inputs, t25_n_code_outputs,
+ (const int*) t25_code_generator,
+ (const int*) t25_code_feedback,
+ true, 0, 0, t25_encode_soai);
+}
+
+// TEST 26
+//
+// checking for SIAO realization (implicitely)
+// start state is 0, same feedback, no termination
-const static int t8_code_generator[6] = {1, 0, 5, 0, 1, 6};
-const static int t8_code_feedback[6] = {0, 0, 7, 0, 0, 3};
-const static int t8_n_code_inputs = 3;
-const static int t8_n_code_outputs = 2;
-const static int t8_n_input_items = 17;
-const static int t8_n_output_items = 17;
+const static int t26_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t26_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static int t26_encode_soai = 0;
-const static char t8_in_0[t8_n_input_items] =
+const static char t26_in_0[] =
{0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0};
-const static char t8_in_1[t8_n_input_items] =
+const static char t26_in_1[] =
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-const static char t8_in_2[t8_n_input_items] =
+const static char t26_in_2[] =
{0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0};
-const static char* t8_in[t8_n_code_inputs] =
- {t8_in_0, t8_in_1, t8_in_2};
+const static char* t26_in[] =
+ {t26_in_0, t26_in_1, t26_in_2};
+
+const static size_t t26_n_input_items = sizeof (t26_in_0);
+const static size_t t26_n_code_inputs = sizeof (t26_in) / sizeof (char*);
-const static char t8_res_0[t8_n_output_items] =
+const static char t26_res_0[] =
{0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0};
-const static char t8_res_1[t8_n_output_items] =
+const static char t26_res_1[] =
{0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0};
-const static char* t8_res[t8_n_code_outputs] =
- {t8_res_0, t8_res_1};
+const static char* t26_res[] =
+ {t26_res_0, t26_res_1};
+
+const static size_t t26_n_output_items = sizeof (t26_res_0);
+const static size_t t26_n_code_outputs = sizeof (t26_res) / sizeof (char*);
void
-qa_encoder_convolutional_ic1_ic1::t8
+qa_encoder_convolutional_ic1_ic1::t26
()
{
-#if 0
- do_encoder_check (8, (const char**) t8_in, (const char**) t8_res,
- t8_n_input_items, t8_n_output_items, 5, t8_n_code_inputs,
- t8_n_code_outputs, (const int*) t8_code_generator,
- (const int*) t8_code_feedback);
-#endif
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t26_in, (const char**) t26_res,
+ 1, (const size_t*) &t26_n_input_items,
+ (const size_t*) &t26_n_output_items, 100,
+ t26_n_code_inputs, t26_n_code_outputs,
+ (const int*) t26_code_generator,
+ (const int*) t26_code_feedback,
+ true, 0, 0, t26_encode_soai);
+}
+
+// TEST 27
+//
+// checking for SIAO realization (implicitely),
+// start state is 0, different feedbacks, no termination
+
+const static int t27_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t27_code_feedback[] = {0, 7, 0, 5, 0, 5};
+const static int t27_encode_soai = 0;
+
+const static char t27_in_0[] =
+ {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0};
+const static char t27_in_1[] =
+ {0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0};
+const static char* t27_in[] =
+ {t27_in_0, t27_in_1};
+
+const static size_t t27_n_input_items = sizeof (t27_in_0);
+const static size_t t27_n_code_inputs = sizeof (t27_in) / sizeof (char*);
+
+const static char t27_res_0[] =
+ {0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0};
+const static char t27_res_1[] =
+ {0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0};
+const static char t27_res_2[] =
+ {0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0};
+const static char* t27_res[] =
+ {t27_res_0, t27_res_1, t27_res_2};
+
+const static size_t t27_n_output_items = sizeof (t27_res_0);
+const static size_t t27_n_code_outputs = sizeof (t27_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t27
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t27_in, (const char**) t27_res,
+ 1, (const size_t*) &t27_n_input_items,
+ (const size_t*) &t27_n_output_items, 100,
+ t27_n_code_inputs, t27_n_code_outputs,
+ (const int*) t27_code_generator,
+ (const int*) t27_code_feedback,
+ true, 0, 0, t27_encode_soai);
}
+
+// TEST 28
+//
+// checking for SOAI realization (implicitely),
+// with different feedbacks, no termination
+
+const static int t28_code_generator[] = {1, 0, 1, 4, 3, 6};
+const static int t28_code_feedback[] = {0, 0, 0, 5, 7, 7};
+const static int t28_encode_soai = 1;
+
+const static char t28_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 0, 1};
+const static char t28_in_1[] =
+ {0, 0, 1, 0, 1, 1, 0, 0, 1};
+const static char t28_in_2[] =
+ {0, 0, 0, 1, 0, 0, 0, 0, 1};
+const static char* t28_in[] =
+ {t28_in_0, t28_in_1, t28_in_2};
+
+const static size_t t28_n_input_items = sizeof (t28_in_0);
+const static size_t t28_n_code_inputs = sizeof (t28_in) / sizeof (char*);
+
+const static char t28_res_0[] =
+ {0, 1, 0, 1, 0, 1, 0, 0, 0};
+const static char t28_res_1[] =
+ {0, 0, 1, 1, 1, 1, 0, 0, 1};
+const static char* t28_res[] =
+ {t28_res_0, t28_res_1};
+
+const static size_t t28_n_output_items = sizeof (t28_res_0);
+const static size_t t28_n_code_outputs = sizeof (t28_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t28
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t28_in, (const char**) t28_res,
+ 1, (const size_t*) &t28_n_input_items,
+ (const size_t*) &t28_n_output_items, 100,
+ t28_n_code_inputs, t28_n_code_outputs,
+ (const int*) t28_code_generator,
+ (const int*) t28_code_feedback, true,
+ 0, 0, t28_encode_soai);
+}
+
+// TEST 29
+//
+// checking for:
+// start state is 0, no feedback, termination to 0 state
+
+const static int t29_code_generator[] = {1, 0, 5, 0, 1, 6};
+
+const static char t29_in_0[] =
+ {0, 1, 0, 0, 1, 0};
+const static char t29_in_1[] =
+ {0, 1, 0, 0, 0, 0};
+const static char t29_in_2[] =
+ {0, 0, 1, 1, 1, 0};
+const static char* t29_in[] =
+ {t29_in_0, t29_in_1, t29_in_2};
+
+const static size_t t29_n_input_items = sizeof (t29_in_0);
+const static size_t t29_n_code_inputs = sizeof (t29_in) / sizeof (char*);
+
+const static char t29_res_0[] =
+ {0, 1, 1, 1, 1, 1, 1, 0};
+const static char t29_res_1[] =
+ {0, 1, 0, 1, 0, 0, 1, 0};
+const static char* t29_res[] =
+ {t29_res_0, t29_res_1};
+
+const static size_t t29_n_output_items = sizeof (t29_res_0);
+const static size_t t29_n_code_outputs = sizeof (t29_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t29
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t29_in, (const char**) t29_res,
+ 1, (const size_t*) &t29_n_input_items,
+ (const size_t*) &t29_n_output_items, 5, t29_n_code_inputs,
+ t29_n_code_outputs, (const int*) t29_code_generator);
+}
+
+// TEST 30
+//
+// checking for:
+// start state is 0, same feedback, termination to 0 state
+// # of termination bits = 2
+
+const static int t30_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t30_code_feedback[] = {0, 0, 7, 0, 0, 7};
+
+const static char t30_in_0[] =
+ {0, 1, 1, 0, 0, 0, 0};
+const static char t30_in_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char t30_in_2[] =
+ {0, 0, 0, 0, 1, 0, 1};
+const static char* t30_in[] =
+ {t30_in_0, t30_in_1, t30_in_2};
+
+const static size_t t30_n_input_items = sizeof (t30_in_0);
+const static size_t t30_n_code_inputs = sizeof (t30_in) / sizeof (char*);
+
+const static char t30_res_0[] =
+ {0, 1, 1, 0, 1, 0, 1, 0, 1};
+const static char t30_res_1[] =
+ {0, 1, 0, 1, 0, 1, 1, 0, 0};
+const static char* t30_res[] =
+ {t30_res_0, t30_res_1};
+
+const static size_t t30_n_output_items = sizeof (t30_res_0);
+const static size_t t30_n_code_outputs = sizeof (t30_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t30
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t30_in, (const char**) t30_res,
+ 1, (const size_t*) &t30_n_input_items,
+ (const size_t*) &t30_n_output_items, 5, t30_n_code_inputs,
+ t30_n_code_outputs, (const int*) t30_code_generator,
+ (const int*) t30_code_feedback);
+}
+
+// TEST 31
+//
+// checking for:
+// state state is 0, different feedbacks, termination to 0 state
+// # of term bits will be 4
+
+const static int t31_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t31_code_feedback[] = {0, 5, 0, 7, 0, 7};
+
+const static char t31_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 1, 1};
+const static char t31_in_1[] =
+ {0, 0, 0, 1, 1, 1, 0, 1, 0};
+const static char* t31_in[] =
+ {t31_in_0, t31_in_1};
+
+const static size_t t31_n_input_items = sizeof (t31_in_0);
+const static size_t t31_n_code_inputs = sizeof (t31_in) / sizeof (char*);
+
+const static char t31_res_0[] =
+ {0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1};
+const static char t31_res_1[] =
+ {0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0};
+const static char t31_res_2[] =
+ {0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0};
+const static char* t31_res[] =
+ {t31_res_0, t31_res_1, t31_res_2};
+
+const static size_t t31_n_output_items = sizeof (t31_res_0);
+const static size_t t31_n_code_outputs = sizeof (t31_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t31
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t31_in, (const char**) t31_res,
+ 1, (const size_t*) &t31_n_input_items,
+ (const size_t*) &t31_n_output_items, 6, t31_n_code_inputs,
+ t31_n_code_outputs, (const int*) t31_code_generator,
+ (const int*) t31_code_feedback);
+}
+
+// TEST 32
+//
+// checking for:
+// start state is 0, different feedbacks, termination to non-0 state
+// # of term bits will be 2
+
+const static int t32_code_generator[] = {1, 0, 1, 4, 3, 6};
+const static int t32_code_feedback[] = {0, 0, 0, 5, 7, 7};
+const static size_t t32_term_state = 4;
+
+const static char t32_in_0[] =
+ {0, 1, 0, 0, 0, 0, 1};
+const static char t32_in_1[] =
+ {0, 0, 1, 0, 1, 0, 1};
+const static char t32_in_2[] =
+ {0, 0, 0, 1, 0, 0, 1};
+const static char* t32_in[] =
+ {t32_in_0, t32_in_1, t32_in_2};
+
+const static size_t t32_n_input_items = sizeof (t32_in_0);
+const static size_t t32_n_code_inputs = sizeof (t32_in) / sizeof (char*);
+
+const static char t32_res_0[] =
+ {0, 1, 0, 1, 0, 1, 1, 0, 0};
+const static char t32_res_1[] =
+ {0, 0, 1, 1, 1, 1, 1, 0, 1};
+const static char* t32_res[] =
+ {t32_res_0, t32_res_1};
+
+const static size_t t32_n_output_items = sizeof (t32_res_0);
+const static size_t t32_n_code_outputs = sizeof (t32_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t32
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t32_in, (const char**) t32_res,
+ 1, (const size_t*) &t32_n_input_items,
+ (const size_t*) &t32_n_output_items, 5, t32_n_code_inputs,
+ t32_n_code_outputs, (const int*) t32_code_generator,
+ (const int*) t32_code_feedback, true, 0, t32_term_state);
+}
+
+// TEST 33
+//
+// checking for termination to non-0 state, no feedback
+
+const static int t33_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t33_term_state = 2;
+
+const static char t33_in_0[] =
+ {0, 1, 0, 1, 0, 0, 1, 1};
+const static char t33_in_1[] =
+ {0, 1, 0, 0, 1, 0, 1, 1};
+const static char t33_in_2[] =
+ {0, 1, 0, 1, 1, 0, 0, 1};
+const static char* t33_in[] =
+ {t33_in_0, t33_in_1, t33_in_2};
+
+const static size_t t33_n_input_items = sizeof (t33_in_0);
+const static size_t t33_n_code_inputs = sizeof (t33_in) / sizeof (char*);
+
+const static char t33_res_0[] =
+ {0, 0, 1, 0, 0, 0, 1, 0, 1, 0};
+const static char t33_res_1[] =
+ {0, 1, 1, 1, 0, 0, 0, 0, 1, 1};
+const static char* t33_res[] =
+ {t33_res_0, t33_res_1};
+
+const static size_t t33_n_output_items = sizeof (t33_res_0);
+const static size_t t33_n_code_outputs = sizeof (t33_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t33
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t33_in, (const char**) t33_res,
+ 1, (const size_t*) &t33_n_input_items,
+ (const size_t*) &t33_n_output_items, 5,
+ t33_n_code_inputs, t33_n_code_outputs,
+ (const int*) t33_code_generator,
+ 0, true, 0, t33_term_state);
+}
+
+// TEST 34
+//
+// checking for:
+// start state is not 0, no feedback, terminating to 0 state
+
+const static int t34_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t34_start_state = 1;
+
+const static char t34_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0};
+const static char t34_in_1[] =
+ {0, 0, 1, 0, 0, 1, 0};
+const static char t34_in_2[] =
+ {0, 1, 1, 1, 0, 1, 1};
+const static char* t34_in[] =
+ {t34_in_0, t34_in_1, t34_in_2};
+
+const static size_t t34_n_input_items = sizeof (t34_in_0);
+const static size_t t34_n_code_inputs = sizeof (t34_in) / sizeof (char*);
+
+const static char t34_res_0[] =
+ {1, 0, 0, 0, 1, 0, 0, 1, 0};
+const static char t34_res_1[] =
+ {1, 1, 0, 0, 0, 1, 0, 0, 0};
+const static char* t34_res[] =
+ {t34_res_0, t34_res_1};
+
+const static size_t t34_n_output_items = sizeof (t34_res_0);
+const static size_t t34_n_code_outputs = sizeof (t34_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t34
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t34_in, (const char**) t34_res,
+ 1, (const size_t*) &t34_n_input_items,
+ (const size_t*) &t34_n_output_items, 5,
+ t34_n_code_inputs, t34_n_code_outputs,
+ (const int*) t34_code_generator,
+ 0, true, t34_start_state);
+}
+
+// TEST 35
+//
+// checking for:
+// start state is not 0, no feedback, terminating to non-0 state
+
+const static int t35_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t35_start_state = 2;
+const static size_t t35_term_state = 2;
+
+const static char t35_in_0[] =
+ {0, 1, 1, 1, 0, 1, 0};
+const static char t35_in_1[] =
+ {0, 1, 0, 0, 0, 0, 1};
+const static char t35_in_2[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char* t35_in[] =
+ {t35_in_0, t35_in_1, t35_in_2};
+
+const static size_t t35_n_input_items = sizeof (t35_in_0);
+const static size_t t35_n_code_inputs = sizeof (t35_in) / sizeof (char*);
+
+const static char t35_res_0[] =
+ {0, 0, 1, 0, 1, 0, 1, 1, 1};
+const static char t35_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 1, 1};
+const static char* t35_res[] =
+ {t35_res_0, t35_res_1};
+
+const static size_t t35_n_output_items = sizeof (t35_res_0);
+const static size_t t35_n_code_outputs = sizeof (t35_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t35
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t35_in, (const char**) t35_res,
+ 1, (const size_t*) &t35_n_input_items,
+ (const size_t*) &t35_n_output_items, 5, t35_n_code_inputs,
+ t35_n_code_outputs, (const int*) t35_code_generator,
+ 0, true, t35_start_state, t35_term_state);
+}
+
+// TEST 36
+//
+// checking for:
+// start state is not 0, any feedback, termination to 0 state
+
+const static int t36_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t36_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static size_t t36_start_state = 2;
+const static size_t t36_term_state = 0;
+
+const static char t36_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0};
+const static char t36_in_1[] =
+ {0, 0, 1, 1, 0, 1, 0};
+const static char t36_in_2[] =
+ {0, 0, 0, 0, 1, 0, 0};
+const static char* t36_in[] =
+ {t36_in_0, t36_in_1, t36_in_2};
+
+const static size_t t36_n_input_items = sizeof (t36_in_0);
+const static size_t t36_n_code_inputs = sizeof (t36_in) / sizeof (char*);
+
+const static char t36_res_0[] =
+ {0, 0, 1, 0, 0, 1, 0, 1, 1};
+const static char t36_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 0, 1};
+const static char* t36_res[] =
+ {t36_res_0, t36_res_1};
+
+const static size_t t36_n_output_items = sizeof (t36_res_0);
+const static size_t t36_n_code_outputs = sizeof (t36_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t36
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t36_in, (const char**) t36_res,
+ 1, (const size_t*) &t36_n_input_items,
+ (const size_t*) &t36_n_output_items, 5,
+ t36_n_code_inputs, t36_n_code_outputs,
+ (const int*) t36_code_generator,
+ (const int*) t36_code_feedback,
+ true, t36_start_state, t36_term_state);
+}
+
+// TEST 37
+//
+// checking for:
+// start state is not 0, any feedback, termination to non-zero state
+
+const static int t37_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t37_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static size_t t37_start_state = 1;
+const static size_t t37_term_state = 2;
+
+const static char t37_in_0[] =
+ {0, 1, 0, 1, 0, 1, 0};
+const static char t37_in_1[] =
+ {0, 0, 0, 0, 1, 1, 0};
+const static char t37_in_2[] =
+ {0, 1, 0, 0, 0, 1, 1};
+const static char* t37_in[] =
+ {t37_in_0, t37_in_1, t37_in_2};
+
+const static size_t t37_n_input_items = sizeof (t37_in_0);
+const static size_t t37_n_code_inputs = sizeof (t37_in) / sizeof (char*);
+
+const static char t37_res_0[] =
+ {1, 1, 1, 1, 1, 0, 1, 1, 1};
+const static char t37_res_1[] =
+ {1, 0, 0, 1, 0, 0, 0, 0, 1};
+const static char* t37_res[] =
+ {t37_res_0, t37_res_1};
+
+const static size_t t37_n_output_items = sizeof (t37_res_0);
+const static size_t t37_n_code_outputs = sizeof (t37_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t37
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t37_in, (const char**) t37_res,
+ 1, (const size_t*) &t37_n_input_items,
+ (const size_t*) &t37_n_output_items, 5,
+ t37_n_code_inputs, t37_n_code_outputs,
+ (const int*) t37_code_generator,
+ (const int*) t37_code_feedback,
+ true, t37_start_state, t37_term_state);
+}
+
+// TEST 38
+//
+// checking for:
+// no feedback, block coding but no termination
+
+const static int t38_code_generator[] = {1, 0, 3, 0, 1, 6};
+
+const static char t38_in_0[] =
+ {0, 1, 0, 1, 0, 0, 1, 1};
+const static char t38_in_1[] =
+ {0, 1, 0, 0, 1, 0, 1, 1};
+const static char t38_in_2[] =
+ {0, 1, 0, 1, 1, 0, 0, 1};
+const static char* t38_in[] =
+ {t38_in_0, t38_in_1, t38_in_2};
+
+const static size_t t38_n_input_items = sizeof (t38_in_0);
+const static size_t t38_n_code_inputs = sizeof (t38_in) / sizeof (char*);
+
+const static char t38_res_0[] =
+ {0, 0, 1, 0, 0, 0, 1, 0};
+const static char t38_res_1[] =
+ {0, 1, 1, 1, 0, 0, 1, 1};
+const static char* t38_res[] =
+ {t38_res_0, t38_res_1};
+
+const static size_t t38_n_output_items = sizeof (t38_res_0);
+const static size_t t38_n_code_outputs = sizeof (t38_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t38
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t38_in, (const char**) t38_res,
+ 1, (const size_t*) &t38_n_input_items,
+ (const size_t*) &t38_n_output_items, 5,
+ t38_n_code_inputs, t38_n_code_outputs,
+ (const int*) t38_code_generator, 0, false);
+}
+
+// TEST 39
+//
+// checking for:
+// start state is 0, same feedback, block but no termination
+
+const static int t39_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t39_code_feedback[] = {0, 0, 7, 0, 0, 7};
+
+const static char t39_in_0[] =
+ {0, 1, 1, 0, 0, 0, 0};
+const static char t39_in_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char t39_in_2[] =
+ {0, 0, 0, 0, 1, 0, 1};
+const static char* t39_in[] =
+ {t39_in_0, t39_in_1, t39_in_2};
+
+const static size_t t39_n_input_items = sizeof (t39_in_0);
+const static size_t t39_n_code_inputs = sizeof (t39_in) / sizeof (char*);
+
+const static char t39_res_0[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char t39_res_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char* t39_res[] =
+ {t39_res_0, t39_res_1};
+
+const static size_t t39_n_output_items = sizeof (t39_res_0);
+const static size_t t39_n_code_outputs = sizeof (t39_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t39
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t39_in, (const char**) t39_res,
+ 1, (const size_t*) &t39_n_input_items,
+ (const size_t*) &t39_n_output_items, 5, t39_n_code_inputs,
+ t39_n_code_outputs, (const int*) t39_code_generator,
+ (const int*) t39_code_feedback, false);
+}
+
+// TEST 40
+//
+// checking for:
+// state state is 0, different feedbacks, block but no termination
+
+const static int t40_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t40_code_feedback[] = {0, 5, 0, 7, 0, 7};
+
+const static char t40_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 1, 1};
+const static char t40_in_1[] =
+ {0, 0, 0, 1, 1, 1, 0, 1, 0};
+const static char* t40_in[] =
+ {t40_in_0, t40_in_1};
+
+const static size_t t40_n_input_items = sizeof (t40_in_0);
+const static size_t t40_n_code_inputs = sizeof (t40_in) / sizeof (char*);
+
+const static char t40_res_0[] =
+ {0, 1, 0, 0, 0, 0, 0, 1, 1};
+const static char t40_res_1[] =
+ {0, 0, 0, 1, 1, 0, 0, 1, 0};
+const static char t40_res_2[] =
+ {0, 1, 0, 0, 1, 0, 0, 1, 0};
+const static char* t40_res[] =
+ {t40_res_0, t40_res_1, t40_res_2};
+
+const static size_t t40_n_output_items = sizeof (t40_res_0);
+const static size_t t40_n_code_outputs = sizeof (t40_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t40
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t40_in, (const char**) t40_res,
+ 1, (const size_t*) &t40_n_input_items,
+ (const size_t*) &t40_n_output_items, 6, t40_n_code_inputs,
+ t40_n_code_outputs, (const int*) t40_code_generator,
+ (const int*) t40_code_feedback, false);
+}
+
+// TEST 41
+//
+// checking for:
+// start state is not 0, no feedback, terminating to non-0 state
+// multi-encode, forced to retrieve all term outputs
+
+const static int t41_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t41_start_state = 2;
+const static size_t t41_term_state = 2;
+
+const static char t41_in_0[] =
+ {0, 1, 1, 1, 0, 1, 0};
+const static char t41_in_1[] =
+ {0, 1, 0, 0, 0, 0, 1};
+const static char t41_in_2[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char* t41_in[] =
+ {t41_in_0, t41_in_1, t41_in_2};
+
+const static size_t t41_n_input_items[] = {3, 2, 2};
+const static size_t t41_n_io_items = (sizeof (t41_n_input_items) /
+ sizeof (size_t));
+const static size_t t41_n_code_inputs = sizeof (t41_in) / sizeof (char*);
+
+const static char t41_res_0[] =
+ {0, 0, 1, 0, 1, 0, 1, 1, 1};
+const static char t41_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 1, 1};
+const static char* t41_res[] =
+ {t41_res_0, t41_res_1};
+
+const static size_t t41_n_output_items[] = {3, 4, 2};
+const static size_t t41_n_code_outputs = sizeof (t41_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t41
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t41_in, (const char**) t41_res,
+ t41_n_io_items, (const size_t*) t41_n_input_items,
+ (const size_t*) t41_n_output_items, 5, t41_n_code_inputs,
+ t41_n_code_outputs, (const int*) t41_code_generator,
+ 0, true, t41_start_state, t41_term_state);
+}
+
+// TEST 42
+//
+// checking for:
+// start state is not 0, any feedback, termination to non-zero state
+// multi-encode
+
+const static int t42_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t42_code_feedback[] = {0, 0, 7, 0, 0, 7};
+const static size_t t42_start_state = 1;
+const static size_t t42_term_state = 2;
+
+const static char t42_in_0[] =
+ {0, 1, 0, 1, 0, 1, 0};
+const static char t42_in_1[] =
+ {0, 0, 0, 0, 1, 1, 0};
+const static char t42_in_2[] =
+ {0, 1, 0, 0, 0, 1, 1};
+const static char* t42_in[] =
+ {t42_in_0, t42_in_1, t42_in_2};
+
+const static size_t t42_n_input_items[] = {2, 2, 1, 1, 1};
+const static size_t t42_n_io_items = (sizeof (t42_n_input_items) /
+ sizeof (size_t));
+const static size_t t42_n_code_inputs = sizeof (t42_in) / sizeof (char*);
+
+const static char t42_res_0[] =
+ {1, 1, 1, 1, 1, 0, 1, 1, 1};
+const static char t42_res_1[] =
+ {1, 0, 0, 1, 0, 0, 0, 0, 1};
+const static char* t42_res[] =
+ {t42_res_0, t42_res_1};
+
+const static size_t t42_n_output_items[] = {2, 2, 3, 1, 1};
+const static size_t t42_n_code_outputs = sizeof (t42_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t42
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t42_in, (const char**) t42_res,
+ 1, (const size_t*) &t42_n_input_items,
+ (const size_t*) &t42_n_output_items, 5,
+ t42_n_code_inputs, t42_n_code_outputs,
+ (const int*) t42_code_generator,
+ (const int*) t42_code_feedback,
+ true, t42_start_state, t42_term_state);
+}
+
+// TEST 43
+//
+// checking for:
+// no feedback, block coding but no termination
+// multi-encode
+
+const static int t43_code_generator[] = {1, 0, 3, 0, 1, 6};
+
+const static char t43_in_0[] =
+ {0, 1, 0, 1, 0, 0, 1, 1};
+const static char t43_in_1[] =
+ {0, 1, 0, 0, 1, 0, 1, 1};
+const static char t43_in_2[] =
+ {0, 1, 0, 1, 1, 0, 0, 1};
+const static char* t43_in[] =
+ {t43_in_0, t43_in_1, t43_in_2};
+
+const static size_t t43_n_input_items[] = {2, 2, 2, 2};
+const static size_t t43_n_n_input_items = (sizeof (t43_n_input_items) /
+ sizeof (size_t));
+const static size_t t43_n_code_inputs = sizeof (t43_in) / sizeof (char*);
+
+const static char t43_res_0[] =
+ {0, 0, 1, 0, 0, 0, 1, 0};
+const static char t43_res_1[] =
+ {0, 1, 1, 1, 0, 0, 1, 1};
+const static char* t43_res[] =
+ {t43_res_0, t43_res_1};
+
+const static size_t t43_n_output_items[] = {2, 2, 2, 2};
+const static size_t t43_n_code_outputs = sizeof (t43_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t43
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t43_in, (const char**) t43_res,
+ t43_n_n_input_items, (const size_t*) t43_n_input_items,
+ (const size_t*) t43_n_output_items, 5,
+ t43_n_code_inputs, t43_n_code_outputs,
+ (const int*) t43_code_generator, 0, false);
+}
+
+// TEST 44
+//
+// checking for:
+// start state is 0, same feedback, block but no termination
+// multi-encode
+
+const static int t44_code_generator[] = {1, 0, 5, 0, 1, 6};
+const static int t44_code_feedback[] = {0, 0, 7, 0, 0, 7};
+
+const static char t44_in_0[] =
+ {0, 1, 1, 0, 0, 0, 0};
+const static char t44_in_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char t44_in_2[] =
+ {0, 0, 0, 0, 1, 0, 1};
+const static char* t44_in[] =
+ {t44_in_0, t44_in_1, t44_in_2};
+
+const static size_t t44_n_input_items[] = {5, 1, 1};
+const static size_t t44_n_n_input_items = (sizeof (t44_n_input_items) /
+ sizeof (size_t));
+const static size_t t44_n_code_inputs = sizeof (t44_in) / sizeof (char*);
+
+const static char t44_res_0[] =
+ {0, 1, 1, 0, 1, 0, 1};
+const static char t44_res_1[] =
+ {0, 1, 0, 1, 0, 0, 0};
+const static char* t44_res[] =
+ {t44_res_0, t44_res_1};
+
+const static size_t t44_n_output_items[] = {5, 1, 1};
+const static size_t t44_n_code_outputs = sizeof (t44_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t44
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t44_in, (const char**) t44_res,
+ t44_n_n_input_items, (const size_t*) t44_n_input_items,
+ (const size_t*) t44_n_output_items, 5, t44_n_code_inputs,
+ t44_n_code_outputs, (const int*) t44_code_generator,
+ (const int*) t44_code_feedback, false);
+}
+
+// TEST 45
+//
+// checking for:
+// state state is 0, different feedbacks, block but no termination
+// multi-encode
+
+const static int t45_code_generator[] = {1, 4, 0, 3, 1, 6};
+const static int t45_code_feedback[] = {0, 5, 0, 7, 0, 7};
+
+const static char t45_in_0[] =
+ {0, 1, 0, 0, 0, 1, 0, 1, 1};
+const static char t45_in_1[] =
+ {0, 0, 0, 1, 1, 1, 0, 1, 0};
+const static char* t45_in[] =
+ {t45_in_0, t45_in_1};
+
+const static size_t t45_n_input_items[] = {5, 4};
+const static size_t t45_n_n_input_items = (sizeof (t45_n_input_items) /
+ sizeof (size_t));
+const static size_t t45_n_code_inputs = sizeof (t45_in) / sizeof (char*);
+
+const static char t45_res_0[] =
+ {0, 1, 0, 0, 0, 0, 0, 1, 1};
+const static char t45_res_1[] =
+ {0, 0, 0, 1, 1, 0, 0, 1, 0};
+const static char t45_res_2[] =
+ {0, 1, 0, 0, 1, 0, 0, 1, 0};
+const static char* t45_res[] =
+ {t45_res_0, t45_res_1, t45_res_2};
+
+const static size_t t45_n_output_items[] = {5, 4};
+const static size_t t45_n_code_outputs = sizeof (t45_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t45
+()
+{
+ do_encoder_check (g_do_encode_in_or_out_23_45,
+ (const char**) t45_in, (const char**) t45_res,
+ t45_n_n_input_items, (const size_t*) t45_n_input_items,
+ (const size_t*) t45_n_output_items, 6, t45_n_code_inputs,
+ t45_n_code_outputs, (const int*) t45_code_generator,
+ (const int*) t45_code_feedback, false);
+}
+
+// TEST 46
+//
+// checking for:
+// start state is not 0, no feedback, terminating to non-0 state
+// multi-encode, input dictates encoding: forced to retrieve all term
+// outputs; multiple encoding blocks
+
+const static int t46_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t46_start_state = 2;
+const static size_t t46_term_state = 2;
+
+const static char t46_in_0[] =
+ {0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0};
+const static char t46_in_1[] =
+ {0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0};
+const static char t46_in_2[] =
+ {0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0};
+const static char* t46_in[] =
+ {t46_in_0, t46_in_1, t46_in_2};
+
+const static size_t t46_n_input_items[] = {5, 0, 4, 1, 1};
+const static size_t t46_n_io_items = (sizeof (t46_n_input_items) /
+ sizeof (size_t));
+const static size_t t46_n_code_inputs = sizeof (t46_in) / sizeof (char*);
+
+const static char t46_res_0[] =
+ {0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0};
+const static char t46_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1};
+const static char* t46_res[] =
+ {t46_res_0, t46_res_1};
+
+const static size_t t46_n_output_items[] = {7, 0, 4, 3, 1};
+const static size_t t46_n_code_outputs = sizeof (t46_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t46
+()
+{
+ do_encoder_check (true,
+ (const char**) t46_in, (const char**) t46_res,
+ t46_n_io_items, (const size_t*) t46_n_input_items,
+ (const size_t*) t46_n_output_items, 5, t46_n_code_inputs,
+ t46_n_code_outputs, (const int*) t46_code_generator,
+ 0, true, t46_start_state, t46_term_state);
+}
+
+// TEST 47
+//
+// checking for:
+// start state is not 0, no feedback, terminating to non-0 state
+// multi-encode, output dictates encoding; multiple encoding blocks
+
+const static int t47_code_generator[] = {1, 0, 3, 0, 1, 6};
+const static size_t t47_start_state = 2;
+const static size_t t47_term_state = 2;
+
+const static char t47_in_0[] =
+ {0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0};
+const static char t47_in_1[] =
+ {0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0};
+const static char t47_in_2[] =
+ {0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0};
+const static char* t47_in[] =
+ {t47_in_0, t47_in_1, t47_in_2};
+
+const static size_t t47_n_input_items[] = {5, 0, 0, 4, 1, 0, 0, 1};
+const static size_t t47_n_io_items = (sizeof (t47_n_input_items) /
+ sizeof (size_t));
+const static size_t t47_n_code_inputs = sizeof (t47_in) / sizeof (char*);
+
+const static char t47_res_0[] =
+ {0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0};
+const static char t47_res_1[] =
+ {1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1};
+const static char* t47_res[] =
+ {t47_res_0, t47_res_1};
+
+const static size_t t47_n_output_items[] = {6, 0, 1, 4, 1, 1, 1, 1};
+const static size_t t47_n_code_outputs = sizeof (t47_res) / sizeof (char*);
+
+void
+qa_encoder_convolutional_ic1_ic1::t47
+()
+{
+ do_encoder_check (false,
+ (const char**) t47_in, (const char**) t47_res,
+ t47_n_io_items, (const size_t*) t47_n_input_items,
+ (const size_t*) t47_n_output_items, 5, t47_n_code_inputs,
+ t47_n_code_outputs, (const int*) t47_code_generator,
+ 0, true, t47_start_state, t47_term_state);
+}
+
diff --git a/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.h b/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.h
index 64ab3ab5f..5890bb9ef 100644
--- a/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.h
+++ b/gr-error-correcting-codes/src/lib/libecc/tests/qa_encoder_convolutional_ic1_ic1.h
@@ -39,19 +39,63 @@ class qa_encoder_convolutional_ic1_ic1 : public CppUnit::TestCase {
CPPUNIT_TEST (t6);
CPPUNIT_TEST (t7);
CPPUNIT_TEST (t8);
+ CPPUNIT_TEST (t9);
+ CPPUNIT_TEST (t10);
+ CPPUNIT_TEST (t11);
+ CPPUNIT_TEST (t12);
+ CPPUNIT_TEST (t13);
+ CPPUNIT_TEST (t14);
+ CPPUNIT_TEST (t15);
+ CPPUNIT_TEST (t16);
+ CPPUNIT_TEST (t17);
+ CPPUNIT_TEST (t18);
+ CPPUNIT_TEST (t19);
+ CPPUNIT_TEST (t20);
+ CPPUNIT_TEST (t21);
+ CPPUNIT_TEST (t22);
+ CPPUNIT_TEST (t23);
+ CPPUNIT_TEST (t24);
+ CPPUNIT_TEST (t25);
+ CPPUNIT_TEST (t26);
+ CPPUNIT_TEST (t27);
+ CPPUNIT_TEST (t28);
+ CPPUNIT_TEST (t29);
+ CPPUNIT_TEST (t30);
+ CPPUNIT_TEST (t31);
+ CPPUNIT_TEST (t32);
+ CPPUNIT_TEST (t33);
+ CPPUNIT_TEST (t34);
+ CPPUNIT_TEST (t35);
+ CPPUNIT_TEST (t36);
+ CPPUNIT_TEST (t37);
+ CPPUNIT_TEST (t38);
+ CPPUNIT_TEST (t39);
+ CPPUNIT_TEST (t40);
+ CPPUNIT_TEST (t41);
+ CPPUNIT_TEST (t42);
+ CPPUNIT_TEST (t43);
+ CPPUNIT_TEST (t44);
+ CPPUNIT_TEST (t45);
+ CPPUNIT_TEST (t46);
+ CPPUNIT_TEST (t47);
CPPUNIT_TEST_SUITE_END ();
private:
- void do_encoder_check (int test_n,
+ void do_encoder_check (bool use_encode_in_or_out,
const char** c_t1_in,
const char** c_t1_res,
- int n_input_items,
- int n_output_items,
- int block_size_bits,
- int n_code_inputs,
- int n_code_outputs,
+ const size_t n_io_items,
+ const size_t* n_input_items,
+ const size_t* n_output_items,
+ const size_t block_size_bits,
+ const size_t n_code_inputs,
+ const size_t n_code_outputs,
const int* code_generators,
- const int* code_feedback = 0);
+ const int* code_feedback = 0,
+ const bool do_termination = true,
+ const size_t start_state = 0,
+ const size_t term_state = 0,
+ const int encode_soai = -1);
void t0 ();
void t1 ();
@@ -62,6 +106,45 @@ class qa_encoder_convolutional_ic1_ic1 : public CppUnit::TestCase {
void t6 ();
void t7 ();
void t8 ();
+ void t9 ();
+ void t10 ();
+ void t11 ();
+ void t12 ();
+ void t13 ();
+ void t14 ();
+ void t15 ();
+ void t16 ();
+ void t17 ();
+ void t18 ();
+ void t19 ();
+ void t20 ();
+ void t21 ();
+ void t22 ();
+ void t23 ();
+ void t24 ();
+ void t25 ();
+ void t26 ();
+ void t27 ();
+ void t28 ();
+ void t29 ();
+ void t30 ();
+ void t31 ();
+ void t32 ();
+ void t33 ();
+ void t34 ();
+ void t35 ();
+ void t36 ();
+ void t37 ();
+ void t38 ();
+ void t39 ();
+ void t40 ();
+ void t41 ();
+ void t42 ();
+ void t43 ();
+ void t44 ();
+ void t45 ();
+ void t46 ();
+ void t47 ();
};
#endif /* INCLUDED_QA_ENCODER_CONVOLUTIONAL_IC1_IC1_H */