summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/usrp/usrp_spectrum_sense.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/usrp/usrp_spectrum_sense.py')
-rwxr-xr-xgnuradio-examples/python/usrp/usrp_spectrum_sense.py241
1 files changed, 241 insertions, 0 deletions
diff --git a/gnuradio-examples/python/usrp/usrp_spectrum_sense.py b/gnuradio-examples/python/usrp/usrp_spectrum_sense.py
new file mode 100755
index 000000000..87768649c
--- /dev/null
+++ b/gnuradio-examples/python/usrp/usrp_spectrum_sense.py
@@ -0,0 +1,241 @@
+#!/usr/bin/env python
+
+from gnuradio import gr, gru, eng_notation, optfir, window
+from gnuradio import audio
+from gnuradio import usrp
+from gnuradio import blks
+from gnuradio.eng_option import eng_option
+from optparse import OptionParser
+import usrp_dbid
+import sys
+import math
+import struct
+
+
+class tune(gr.feval_dd):
+ """
+ This class allows C++ code to callback into python.
+ """
+ def __init__(self, fg):
+ gr.feval_dd.__init__(self)
+ self.fg = fg
+
+ def eval(self, ignore):
+ """
+ This method is called from gr.bin_statistics_f when it wants to change
+ the center frequency. This method tunes the front end to the new center
+ frequency, and returns the new frequency as its result.
+ """
+ try:
+ # We use this try block so that if something goes wrong from here
+ # down, at least we'll have a prayer of knowing what went wrong.
+ # Without this, you get a very mysterious:
+ #
+ # terminate called after throwing an instance of 'Swig::DirectorMethodException'
+ # Aborted
+ #
+ # message on stderr. Not exactly helpful ;)
+
+ new_freq = self.fg.set_next_freq()
+ return new_freq
+
+ except Exception, e:
+ print "tune: Exception: ", e
+
+
+class parse_msg(object):
+ def __init__(self, msg):
+ self.center_freq = msg.arg1()
+ self.vlen = int(msg.arg2())
+ assert(msg.length() == self.vlen * gr.sizeof_float)
+
+ # FIXME consider using Numarray or NumPy vector
+ t = msg.to_string()
+ self.raw_data = t
+ self.data = struct.unpack('%df' % (self.vlen,), t)
+
+
+class my_graph(gr.flow_graph):
+
+ def __init__(self):
+ gr.flow_graph.__init__(self)
+
+ usage = "usage: %prog [options] min_freq max_freq"
+ parser = OptionParser(option_class=eng_option, usage=usage)
+ parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0,0),
+ help="select USRP Rx side A or B (default=A)")
+ parser.add_option("-g", "--gain", type="eng_float", default=None,
+ help="set gain in dB (default is midpoint)")
+ parser.add_option("", "--tune-delay", type="eng_float", default=1e-3, metavar="SECS",
+ help="time to delay (in seconds) after changing frequency [default=%default]")
+ parser.add_option("", "--dwell-delay", type="eng_float", default=10e-3, metavar="SECS",
+ help="time to dwell (in seconds) at a given frequncy [default=%default]")
+ parser.add_option("-F", "--fft-size", type="int", default=256,
+ help="specify number of FFT bins [default=%default]")
+ parser.add_option("-d", "--decim", type="intx", default=16,
+ help="set decimation to DECIM [default=%default]")
+ parser.add_option("", "--real-time", action="store_true", default=False,
+ help="Attempt to enable real-time scheduling")
+ parser.add_option("-B", "--fusb-block-size", type="int", default=0,
+ help="specify fast usb block size [default=%default]")
+ parser.add_option("-N", "--fusb-nblocks", type="int", default=0,
+ help="specify number of fast usb blocks [default=%default]")
+
+ (options, args) = parser.parse_args()
+ if len(args) != 2:
+ parser.print_help()
+ sys.exit(1)
+
+ self.min_freq = eng_notation.str_to_num(args[0])
+ self.max_freq = eng_notation.str_to_num(args[1])
+
+ if self.min_freq > self.max_freq:
+ self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them
+
+ self.fft_size = options.fft_size
+
+
+ if not options.real_time:
+ realtime = False
+ else:
+ # Attempt to enable realtime scheduling
+ r = gr.enable_realtime_scheduling()
+ if r == gr.RT_OK:
+ realtime = True
+ else:
+ realtime = False
+ print "Note: failed to enable realtime scheduling"
+
+ # If the user hasn't set the fusb_* parameters on the command line,
+ # pick some values that will reduce latency.
+
+ if 1:
+ if options.fusb_block_size == 0 and options.fusb_nblocks == 0:
+ if realtime: # be more aggressive
+ options.fusb_block_size = gr.prefs().get_long('fusb', 'rt_block_size', 1024)
+ options.fusb_nblocks = gr.prefs().get_long('fusb', 'rt_nblocks', 16)
+ else:
+ options.fusb_block_size = gr.prefs().get_long('fusb', 'block_size', 4096)
+ options.fusb_nblocks = gr.prefs().get_long('fusb', 'nblocks', 16)
+
+ #print "fusb_block_size =", options.fusb_block_size
+ #print "fusb_nblocks =", options.fusb_nblocks
+
+ # build graph
+
+ self.u = usrp.source_c(fusb_block_size=options.fusb_block_size,
+ fusb_nblocks=options.fusb_nblocks)
+
+
+ adc_rate = self.u.adc_rate() # 64 MS/s
+ usrp_decim = options.decim
+ self.u.set_decim_rate(usrp_decim)
+ usrp_rate = adc_rate / usrp_decim
+
+ self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
+ self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
+ print "Using RX d'board %s" % (self.subdev.side_and_name(),)
+
+
+ s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
+
+ mywindow = window.blackmanharris(self.fft_size)
+ fft = gr.fft_vcc(self.fft_size, True, mywindow)
+ power = 0
+ for tap in mywindow:
+ power += tap*tap
+
+ c2mag = gr.complex_to_mag_squared(self.fft_size)
+
+ # FIXME the log10 primitive is dog slow
+ log = gr.nlog10_ff(10, self.fft_size,
+ -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size))
+
+ # Set the freq_step to 75% of the actual data throughput.
+ # This allows us to discard the bins on both ends of the spectrum.
+
+ self.freq_step = 0.75 * usrp_rate
+ self.min_center_freq = self.min_freq + self.freq_step/2
+ self.max_center_freq = self.max_freq - self.freq_step/2
+
+ self.next_freq = self.min_center_freq
+
+ tune_delay = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size))) # in fft_frames
+ dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames
+
+ self.msgq = gr.msg_queue(16)
+ self._tune_callback = tune(self) # hang on to this to keep it from being GC'd
+ stats = gr.bin_statistics_f(self.fft_size, self.msgq,
+ self._tune_callback, tune_delay, dwell_delay)
+
+ # FIXME leave out the log10 until we speed it up
+ #self.connect(self.u, s2v, fft, c2mag, log, stats)
+ self.connect(self.u, s2v, fft, c2mag, stats)
+
+ if options.gain is None:
+ # if no gain was specified, use the mid-point in dB
+ g = self.subdev.gain_range()
+ options.gain = float(g[0]+g[1])/2
+
+ self.set_gain(options.gain)
+ print "gain =", options.gain
+
+
+ def set_next_freq(self):
+ target_freq = self.next_freq
+ self.next_freq = self.next_freq + self.freq_step
+ if self.next_freq > self.max_center_freq:
+ self.next_freq = self.min_center_freq
+
+ if not self.set_freq(target_freq):
+ print "Failed to set frequency to", target_freq
+
+ return target_freq
+
+
+ def set_freq(self, target_freq):
+ """
+ Set the center frequency we're interested in.
+
+ @param target_freq: frequency in Hz
+ @rypte: bool
+
+ Tuning is a two step process. First we ask the front-end to
+ tune as close to the desired frequency as it can. Then we use
+ the result of that operation and our target_frequency to
+ determine the value for the digital down converter.
+ """
+ return self.u.tune(0, self.subdev, target_freq)
+
+
+ def set_gain(self, gain):
+ self.subdev.set_gain(gain)
+
+
+def main_loop(fg):
+ while 1:
+
+ # Get the next message sent from the C++ code (blocking call).
+ # It contains the center frequency and the mag squared of the fft
+ m = parse_msg(fg.msgq.delete_head())
+
+ # Print center freq so we know that something is happening...
+ print m.center_freq
+
+ # FIXME do something useful with the data...
+
+ # m.data are the mag_squared of the fft output (they are in the
+ # standard order. I.e., bin 0 == DC.)
+ # You'll probably want to do the equivalent of "fftshift" on them
+ # m.raw_data is a string that contains the binary floats.
+ # You could write this as binary to a file.
+
+
+if __name__ == '__main__':
+ fg = my_graph()
+ try:
+ fg.start() # start executing flow graph in another thread...
+ main_loop(fg)
+
+ except KeyboardInterrupt:
+ pass