summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/pfb
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/pfb')
-rw-r--r--gnuradio-examples/python/pfb/CMakeLists.txt36
-rwxr-xr-xgnuradio-examples/python/pfb/channelize.py191
-rwxr-xr-xgnuradio-examples/python/pfb/chirp_channelize.py203
-rwxr-xr-xgnuradio-examples/python/pfb/decimate.py178
-rwxr-xr-xgnuradio-examples/python/pfb/fmtest.py225
-rwxr-xr-xgnuradio-examples/python/pfb/interpolate.py233
-rwxr-xr-xgnuradio-examples/python/pfb/reconstruction.py131
-rwxr-xr-xgnuradio-examples/python/pfb/resampler.py127
-rw-r--r--gnuradio-examples/python/pfb/resampler_demo.grc598
-rwxr-xr-xgnuradio-examples/python/pfb/synth_filter.py83
-rwxr-xr-xgnuradio-examples/python/pfb/synth_to_chan.py117
11 files changed, 0 insertions, 2122 deletions
diff --git a/gnuradio-examples/python/pfb/CMakeLists.txt b/gnuradio-examples/python/pfb/CMakeLists.txt
deleted file mode 100644
index 88fdf2ead..000000000
--- a/gnuradio-examples/python/pfb/CMakeLists.txt
+++ /dev/null
@@ -1,36 +0,0 @@
-# Copyright 2011 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-
-include(GrPython)
-
-GR_PYTHON_INSTALL(PROGRAMS
- channelize.py
- chirp_channelize.py
- decimate.py
- fmtest.py
- interpolate.py
- resampler_demo.grc
- resampler.py
- synth_filter.py
- synth_to_chan.py
- reconstruction.py
- DESTINATION ${GR_PKG_DATA_DIR}/examples/pfb
- COMPONENT "gnuradio_examples"
-)
-
diff --git a/gnuradio-examples/python/pfb/channelize.py b/gnuradio-examples/python/pfb/channelize.py
deleted file mode 100755
index 2fcb14a36..000000000
--- a/gnuradio-examples/python/pfb/channelize.py
+++ /dev/null
@@ -1,191 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
- from pylab import mlab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class pfb_top_block(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._N = 2000000 # number of samples to use
- self._fs = 9000 # initial sampling rate
- self._M = 9 # Number of channels to channelize
-
- # Create a set of taps for the PFB channelizer
- self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50,
- attenuation_dB=100, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Calculate the number of taps per channel for our own information
- tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
- print "Number of taps: ", len(self._taps)
- print "Number of channels: ", self._M
- print "Taps per channel: ", tpc
-
- # Create a set of signals at different frequencies
- # freqs lists the frequencies of the signals that get stored
- # in the list "signals", which then get summed together
- self.signals = list()
- self.add = gr.add_cc()
- freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4080]
- for i in xrange(len(freqs)):
- self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
- self.connect(self.signals[i], (self.add,i))
-
- self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
- # Construct the channelizer filter
- self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps, 1)
-
- # Construct a vector sink for the input signal to the channelizer
- self.snk_i = gr.vector_sink_c()
-
- # Connect the blocks
- self.connect(self.add, self.head, self.pfb)
- self.connect(self.add, self.snk_i)
-
- # Use this to play with the channel mapping
- #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4])
-
- # Create a vector sink for each of M output channels of the filter and connect it
- self.snks = list()
- for i in xrange(self._M):
- self.snks.append(gr.vector_sink_c())
- self.connect((self.pfb, i), self.snks[i])
-
-
-def main():
- tstart = time.time()
-
- tb = pfb_top_block()
- tb.run()
-
- tend = time.time()
- print "Run time: %f" % (tend - tstart)
-
- if 1:
- fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
- fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
- fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
-
- Ns = 1000
- Ne = 10000
-
- fftlen = 8192
- winfunc = scipy.blackman
- fs = tb._fs
-
- # Plot the input signal on its own figure
- d = tb.snk_i.data()[Ns:Ne]
- spin_f = fig_in.add_subplot(2, 1, 1)
-
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_in = 10.0*scipy.log10(abs(X))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- pin_f = spin_f.plot(f_in, X_in, "b")
- spin_f.set_xlim([min(f_in), max(f_in)+1])
- spin_f.set_ylim([-200.0, 50.0])
-
- spin_f.set_title("Input Signal", weight="bold")
- spin_f.set_xlabel("Frequency (Hz)")
- spin_f.set_ylabel("Power (dBW)")
-
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- spin_t = fig_in.add_subplot(2, 1, 2)
- pin_t = spin_t.plot(t_in, x_in.real, "b")
- pin_t = spin_t.plot(t_in, x_in.imag, "r")
-
- spin_t.set_xlabel("Time (s)")
- spin_t.set_ylabel("Amplitude")
-
- Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
- Nrows = int(scipy.floor(tb._M / Ncols))
- if(tb._M % Ncols != 0):
- Nrows += 1
-
- # Plot each of the channels outputs. Frequencies on Figure 2 and
- # time signals on Figure 3
- fs_o = tb._fs / tb._M
- Ts_o = 1.0/fs_o
- Tmax_o = len(d)*Ts_o
- for i in xrange(len(tb.snks)):
- # remove issues with the transients at the beginning
- # also remove some corruption at the end of the stream
- # this is a bug, probably due to the corner cases
- d = tb.snks[i].data()[Ns:Ne]
-
- sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(X))
- f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
- p2_f = sp1_f.plot(f_o, X_o, "b")
- sp1_f.set_xlim([min(f_o), max(f_o)+1])
- sp1_f.set_ylim([-200.0, 50.0])
-
- sp1_f.set_title(("Channel %d" % i), weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- x_o = scipy.array(d)
- t_o = scipy.arange(0, Tmax_o, Ts_o)
- sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
- p2_o = sp2_o.plot(t_o, x_o.real, "b")
- p2_o = sp2_o.plot(t_o, x_o.imag, "r")
- sp2_o.set_xlim([min(t_o), max(t_o)+1])
- sp2_o.set_ylim([-2, 2])
-
- sp2_o.set_title(("Channel %d" % i), weight="bold")
- sp2_o.set_xlabel("Time (s)")
- sp2_o.set_ylabel("Amplitude")
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-
diff --git a/gnuradio-examples/python/pfb/chirp_channelize.py b/gnuradio-examples/python/pfb/chirp_channelize.py
deleted file mode 100755
index 951255d3b..000000000
--- a/gnuradio-examples/python/pfb/chirp_channelize.py
+++ /dev/null
@@ -1,203 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
- from pylab import mlab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class pfb_top_block(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._N = 200000 # number of samples to use
- self._fs = 9000 # initial sampling rate
- self._M = 9 # Number of channels to channelize
-
- # Create a set of taps for the PFB channelizer
- self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20,
- attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Calculate the number of taps per channel for our own information
- tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
- print "Number of taps: ", len(self._taps)
- print "Number of channels: ", self._M
- print "Taps per channel: ", tpc
-
- repeated = True
- if(repeated):
- self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
- else:
- amp = 100
- data = scipy.arange(0, amp, amp/float(self._N))
- self.vco_input = gr.vector_source_f(data, False)
-
- # Build a VCO controlled by either the sinusoid or single chirp tone
- # Then convert this to a complex signal
- self.vco = gr.vco_f(self._fs, 225, 1)
- self.f2c = gr.float_to_complex()
-
- self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
- # Construct the channelizer filter
- self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-
- # Construct a vector sink for the input signal to the channelizer
- self.snk_i = gr.vector_sink_c()
-
- # Connect the blocks
- self.connect(self.vco_input, self.vco, self.f2c)
- self.connect(self.f2c, self.head, self.pfb)
- self.connect(self.f2c, self.snk_i)
-
- # Create a vector sink for each of M output channels of the filter and connect it
- self.snks = list()
- for i in xrange(self._M):
- self.snks.append(gr.vector_sink_c())
- self.connect((self.pfb, i), self.snks[i])
-
-
-def main():
- tstart = time.time()
-
- tb = pfb_top_block()
- tb.run()
-
- tend = time.time()
- print "Run time: %f" % (tend - tstart)
-
- if 1:
- fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
- fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
- fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
- fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
-
- Ns = 650
- Ne = 20000
-
- fftlen = 8192
- winfunc = scipy.blackman
- fs = tb._fs
-
- # Plot the input signal on its own figure
- d = tb.snk_i.data()[Ns:Ne]
- spin_f = fig_in.add_subplot(2, 1, 1)
-
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- pin_f = spin_f.plot(f_in, X_in, "b")
- spin_f.set_xlim([min(f_in), max(f_in)+1])
- spin_f.set_ylim([-200.0, 50.0])
-
- spin_f.set_title("Input Signal", weight="bold")
- spin_f.set_xlabel("Frequency (Hz)")
- spin_f.set_ylabel("Power (dBW)")
-
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- spin_t = fig_in.add_subplot(2, 1, 2)
- pin_t = spin_t.plot(t_in, x_in.real, "b")
- pin_t = spin_t.plot(t_in, x_in.imag, "r")
-
- spin_t.set_xlabel("Time (s)")
- spin_t.set_ylabel("Amplitude")
-
- Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
- Nrows = int(scipy.floor(tb._M / Ncols))
- if(tb._M % Ncols != 0):
- Nrows += 1
-
- # Plot each of the channels outputs. Frequencies on Figure 2 and
- # time signals on Figure 3
- fs_o = tb._fs / tb._M
- Ts_o = 1.0/fs_o
- Tmax_o = len(d)*Ts_o
- for i in xrange(len(tb.snks)):
- # remove issues with the transients at the beginning
- # also remove some corruption at the end of the stream
- # this is a bug, probably due to the corner cases
- d = tb.snks[i].data()[Ns:Ne]
-
- sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(X))
- f_o = freq
- p2_f = sp1_f.plot(f_o, X_o, "b")
- sp1_f.set_xlim([min(f_o), max(f_o)+1])
- sp1_f.set_ylim([-200.0, 50.0])
-
- sp1_f.set_title(("Channel %d" % i), weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- x_o = scipy.array(d)
- t_o = scipy.arange(0, Tmax_o, Ts_o)
- sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
- p2_o = sp2_o.plot(t_o, x_o.real, "b")
- p2_o = sp2_o.plot(t_o, x_o.imag, "r")
- sp2_o.set_xlim([min(t_o), max(t_o)+1])
- sp2_o.set_ylim([-2, 2])
-
- sp2_o.set_title(("Channel %d" % i), weight="bold")
- sp2_o.set_xlabel("Time (s)")
- sp2_o.set_ylabel("Amplitude")
-
-
- sp3 = fig3.add_subplot(1,1,1)
- p3 = sp3.plot(t_o, x_o.real)
- sp3.set_xlim([min(t_o), max(t_o)+1])
- sp3.set_ylim([-2, 2])
-
- sp3.set_title("All Channels")
- sp3.set_xlabel("Time (s)")
- sp3.set_ylabel("Amplitude")
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-
diff --git a/gnuradio-examples/python/pfb/decimate.py b/gnuradio-examples/python/pfb/decimate.py
deleted file mode 100755
index 643a2c241..000000000
--- a/gnuradio-examples/python/pfb/decimate.py
+++ /dev/null
@@ -1,178 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
- from pylab import mlab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class pfb_top_block(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._N = 10000000 # number of samples to use
- self._fs = 10000 # initial sampling rate
- self._decim = 20 # Decimation rate
-
- # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth
- self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 150,
- attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Calculate the number of taps per channel for our own information
- tpc = scipy.ceil(float(len(self._taps)) / float(self._decim))
- print "Number of taps: ", len(self._taps)
- print "Number of filters: ", self._decim
- print "Taps per channel: ", tpc
-
- # Build the input signal source
- # We create a list of freqs, and a sine wave is generated and added to the source
- # for each one of these frequencies.
- self.signals = list()
- self.add = gr.add_cc()
- freqs = [10, 20, 2040]
- for i in xrange(len(freqs)):
- self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
- self.connect(self.signals[i], (self.add,i))
-
- self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
- # Construct a PFB decimator filter
- self.pfb = blks2.pfb_decimator_ccf(self._decim, self._taps, 0)
-
- # Construct a standard FIR decimating filter
- self.dec = gr.fir_filter_ccf(self._decim, self._taps)
-
- self.snk_i = gr.vector_sink_c()
-
- # Connect the blocks
- self.connect(self.add, self.head, self.pfb)
- self.connect(self.add, self.snk_i)
-
- # Create the sink for the decimated siganl
- self.snk = gr.vector_sink_c()
- self.connect(self.pfb, self.snk)
-
-
-def main():
- tb = pfb_top_block()
-
- tstart = time.time()
- tb.run()
- tend = time.time()
- print "Run time: %f" % (tend - tstart)
-
- if 1:
- fig1 = pylab.figure(1, figsize=(16,9))
- fig2 = pylab.figure(2, figsize=(16,9))
-
- Ns = 10000
- Ne = 10000
-
- fftlen = 8192
- winfunc = scipy.blackman
- fs = tb._fs
-
- # Plot the input to the decimator
-
- d = tb.snk_i.data()[Ns:Ns+Ne]
- sp1_f = fig1.add_subplot(2, 1, 1)
-
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- p1_f = sp1_f.plot(f_in, X_in, "b")
- sp1_f.set_xlim([min(f_in), max(f_in)+1])
- sp1_f.set_ylim([-200.0, 50.0])
-
- sp1_f.set_title("Input Signal", weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- sp1_t = fig1.add_subplot(2, 1, 2)
- p1_t = sp1_t.plot(t_in, x_in.real, "b")
- p1_t = sp1_t.plot(t_in, x_in.imag, "r")
- sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1])
-
- sp1_t.set_xlabel("Time (s)")
- sp1_t.set_ylabel("Amplitude")
-
-
- # Plot the output of the decimator
- fs_o = tb._fs / tb._decim
-
- sp2_f = fig2.add_subplot(2, 1, 1)
- d = tb.snk.data()[Ns:Ns+Ne]
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
- p2_f = sp2_f.plot(f_o, X_o, "b")
- sp2_f.set_xlim([min(f_o), max(f_o)+1])
- sp2_f.set_ylim([-200.0, 50.0])
-
- sp2_f.set_title("PFB Decimated Signal", weight="bold")
- sp2_f.set_xlabel("Frequency (Hz)")
- sp2_f.set_ylabel("Power (dBW)")
-
-
- Ts_o = 1.0/fs_o
- Tmax_o = len(d)*Ts_o
-
- x_o = scipy.array(d)
- t_o = scipy.arange(0, Tmax_o, Ts_o)
- sp2_t = fig2.add_subplot(2, 1, 2)
- p2_t = sp2_t.plot(t_o, x_o.real, "b-o")
- p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
- sp2_t.set_ylim([-2.5, 2.5])
-
- sp2_t.set_xlabel("Time (s)")
- sp2_t.set_ylabel("Amplitude")
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-
diff --git a/gnuradio-examples/python/pfb/fmtest.py b/gnuradio-examples/python/pfb/fmtest.py
deleted file mode 100755
index 635ee4e9e..000000000
--- a/gnuradio-examples/python/pfb/fmtest.py
+++ /dev/null
@@ -1,225 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, math, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-
-class fmtx(gr.hier_block2):
- def __init__(self, lo_freq, audio_rate, if_rate):
-
- gr.hier_block2.__init__(self, "build_fm",
- gr.io_signature(1, 1, gr.sizeof_float), # Input signature
- gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
-
- fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
-
- # Local oscillator
- lo = gr.sig_source_c (if_rate, # sample rate
- gr.GR_SIN_WAVE, # waveform type
- lo_freq, #frequency
- 1.0, # amplitude
- 0) # DC Offset
- mixer = gr.multiply_cc ()
-
- self.connect (self, fmtx, (mixer, 0))
- self.connect (lo, (mixer, 1))
- self.connect (mixer, self)
-
-class fmtest(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._nsamples = 1000000
- self._audio_rate = 8000
-
- # Set up N channels with their own baseband and IF frequencies
- self._N = 5
- chspacing = 16000
- freq = [10, 20, 30, 40, 50]
- f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]
-
- self._if_rate = 4*self._N*self._audio_rate
-
- # Create a signal source and frequency modulate it
- self.sum = gr.add_cc ()
- for n in xrange(self._N):
- sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
- fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
- self.connect(sig, fm)
- self.connect(fm, (self.sum, n))
-
- self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
- self.snk_tx = gr.vector_sink_c()
- self.channel = blks2.channel_model(0.1)
-
- self.connect(self.sum, self.head, self.channel, self.snk_tx)
-
-
- # Design the channlizer
- self._M = 10
- bw = chspacing/2.0
- t_bw = chspacing/10.0
- self._chan_rate = self._if_rate / self._M
- self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw,
- attenuation_dB=100,
- window=gr.firdes.WIN_BLACKMAN_hARRIS)
- tpc = math.ceil(float(len(self._taps)) / float(self._M))
-
- print "Number of taps: ", len(self._taps)
- print "Number of channels: ", self._M
- print "Taps per channel: ", tpc
-
- self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-
- self.connect(self.channel, self.pfb)
-
- # Create a file sink for each of M output channels of the filter and connect it
- self.fmdet = list()
- self.squelch = list()
- self.snks = list()
- for i in xrange(self._M):
- self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
- self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
- self.snks.append(gr.vector_sink_f())
- self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])
-
- def num_tx_channels(self):
- return self._N
-
- def num_rx_channels(self):
- return self._M
-
-def main():
-
- fm = fmtest()
-
- tstart = time.time()
- fm.run()
- tend = time.time()
-
- if 1:
- fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
- fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
- fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
-
- Ns = 10000
- Ne = 100000
-
- fftlen = 8192
- winfunc = scipy.blackman
-
- # Plot transmitted signal
- fs = fm._if_rate
-
- d = fm.snk_tx.data()[Ns:Ns+Ne]
- sp1_f = fig1.add_subplot(2, 1, 1)
-
- X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- visible=False)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- p1_f = sp1_f.plot(f_in, X_in, "b")
- sp1_f.set_xlim([min(f_in), max(f_in)+1])
- sp1_f.set_ylim([-120.0, 20.0])
-
- sp1_f.set_title("Input Signal", weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- sp1_t = fig1.add_subplot(2, 1, 2)
- p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
- #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
- sp1_t.set_ylim([-5, 5])
-
- # Set up the number of rows and columns for plotting the subfigures
- Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
- Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
- if(fm.num_rx_channels() % Ncols != 0):
- Nrows += 1
-
- # Plot each of the channels outputs. Frequencies on Figure 2 and
- # time signals on Figure 3
- fs_o = fm._audio_rate
- for i in xrange(len(fm.snks)):
- # remove issues with the transients at the beginning
- # also remove some corruption at the end of the stream
- # this is a bug, probably due to the corner cases
- d = fm.snks[i].data()[Ns:Ne]
-
- sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
- X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
- window = lambda d: d*winfunc(fftlen),
- visible=False)
- #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- X_o = 10.0*scipy.log10(abs(X))
- #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
- f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
- p2_f = sp2_f.plot(f_o, X_o, "b")
- sp2_f.set_xlim([min(f_o), max(f_o)+0.1])
- sp2_f.set_ylim([-120.0, 20.0])
- sp2_f.grid(True)
-
- sp2_f.set_title(("Channel %d" % i), weight="bold")
- sp2_f.set_xlabel("Frequency (kHz)")
- sp2_f.set_ylabel("Power (dBW)")
-
-
- Ts = 1.0/fs_o
- Tmax = len(d)*Ts
- t_o = scipy.arange(0, Tmax, Ts)
-
- x_t = scipy.array(d)
- sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
- p2_t = sp2_t.plot(t_o, x_t.real, "b")
- p2_t = sp2_t.plot(t_o, x_t.imag, "r")
- sp2_t.set_xlim([min(t_o), max(t_o)+1])
- sp2_t.set_ylim([-1, 1])
-
- sp2_t.set_xlabel("Time (s)")
- sp2_t.set_ylabel("Amplitude")
-
-
- pylab.show()
-
-
-if __name__ == "__main__":
- main()
diff --git a/gnuradio-examples/python/pfb/interpolate.py b/gnuradio-examples/python/pfb/interpolate.py
deleted file mode 100755
index 370cf26a7..000000000
--- a/gnuradio-examples/python/pfb/interpolate.py
+++ /dev/null
@@ -1,233 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
- from pylab import mlab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class pfb_top_block(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._N = 100000 # number of samples to use
- self._fs = 2000 # initial sampling rate
- self._interp = 5 # Interpolation rate for PFB interpolator
- self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler
-
- # Frequencies of the signals we construct
- freq1 = 100
- freq2 = 200
-
- # Create a set of taps for the PFB interpolator
- # This is based on the post-interpolation sample rate
- self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50,
- attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Create a set of taps for the PFB arbitrary resampler
- # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes,
- # and larger numbers will reduce these even farther
- # The taps in this filter are based on a sampling rate of the filter size since it acts
- # internally as an interpolator.
- flt_size = 32
- self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150,
- attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Calculate the number of taps per channel for our own information
- tpc = scipy.ceil(float(len(self._taps)) / float(self._interp))
- print "Number of taps: ", len(self._taps)
- print "Number of filters: ", self._interp
- print "Taps per channel: ", tpc
-
- # Create a couple of signals at different frequencies
- self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
- self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
- self.signal = gr.add_cc()
-
- self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
- # Construct the PFB interpolator filter
- self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
-
- # Construct the PFB arbitrary resampler filter
- self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, flt_size)
- self.snk_i = gr.vector_sink_c()
-
- #self.pfb_ar.pfb.print_taps()
- #self.pfb.pfb.print_taps()
-
- # Connect the blocks
- self.connect(self.signal1, self.head, (self.signal,0))
- self.connect(self.signal2, (self.signal,1))
- self.connect(self.signal, self.pfb)
- self.connect(self.signal, self.pfb_ar)
- self.connect(self.signal, self.snk_i)
-
- # Create the sink for the interpolated signals
- self.snk1 = gr.vector_sink_c()
- self.snk2 = gr.vector_sink_c()
- self.connect(self.pfb, self.snk1)
- self.connect(self.pfb_ar, self.snk2)
-
-
-def main():
- tb = pfb_top_block()
-
- tstart = time.time()
- tb.run()
- tend = time.time()
- print "Run time: %f" % (tend - tstart)
-
-
- if 1:
- fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
- fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
- fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
-
- Ns = 10000
- Ne = 10000
-
- fftlen = 8192
- winfunc = scipy.blackman
-
- # Plot input signal
- fs = tb._fs
-
- d = tb.snk_i.data()[Ns:Ns+Ne]
- sp1_f = fig1.add_subplot(2, 1, 1)
-
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- p1_f = sp1_f.plot(f_in, X_in, "b")
- sp1_f.set_xlim([min(f_in), max(f_in)+1])
- sp1_f.set_ylim([-200.0, 50.0])
-
-
- sp1_f.set_title("Input Signal", weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- sp1_t = fig1.add_subplot(2, 1, 2)
- p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
- #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
- sp1_t.set_ylim([-2.5, 2.5])
-
- sp1_t.set_title("Input Signal", weight="bold")
- sp1_t.set_xlabel("Time (s)")
- sp1_t.set_ylabel("Amplitude")
-
-
- # Plot output of PFB interpolator
- fs_int = tb._fs*tb._interp
-
- sp2_f = fig2.add_subplot(2, 1, 1)
- d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size))
- p2_f = sp2_f.plot(f_o, X_o, "b")
- sp2_f.set_xlim([min(f_o), max(f_o)+1])
- sp2_f.set_ylim([-200.0, 50.0])
-
- sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
- sp2_f.set_xlabel("Frequency (Hz)")
- sp2_f.set_ylabel("Power (dBW)")
-
- Ts_int = 1.0/fs_int
- Tmax = len(d)*Ts_int
-
- t_o = scipy.arange(0, Tmax, Ts_int)
- x_o1 = scipy.array(d)
- sp2_t = fig2.add_subplot(2, 1, 2)
- p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
- #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
- sp2_t.set_ylim([-2.5, 2.5])
-
- sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
- sp2_t.set_xlabel("Time (s)")
- sp2_t.set_ylabel("Amplitude")
-
-
- # Plot output of PFB arbitrary resampler
- fs_aint = tb._fs * tb._ainterp
-
- sp3_f = fig3.add_subplot(2, 1, 1)
- d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size))
- p3_f = sp3_f.plot(f_o, X_o, "b")
- sp3_f.set_xlim([min(f_o), max(f_o)+1])
- sp3_f.set_ylim([-200.0, 50.0])
-
- sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
- sp3_f.set_xlabel("Frequency (Hz)")
- sp3_f.set_ylabel("Power (dBW)")
-
- Ts_aint = 1.0/fs_aint
- Tmax = len(d)*Ts_aint
-
- t_o = scipy.arange(0, Tmax, Ts_aint)
- x_o2 = scipy.array(d)
- sp3_f = fig3.add_subplot(2, 1, 2)
- p3_f = sp3_f.plot(t_o, x_o2.real, "b-o")
- p3_f = sp3_f.plot(t_o, x_o1.real, "m-o")
- #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o")
- sp3_f.set_ylim([-2.5, 2.5])
-
- sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
- sp3_f.set_xlabel("Time (s)")
- sp3_f.set_ylabel("Amplitude")
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-
diff --git a/gnuradio-examples/python/pfb/reconstruction.py b/gnuradio-examples/python/pfb/reconstruction.py
deleted file mode 100755
index c7909f7a5..000000000
--- a/gnuradio-examples/python/pfb/reconstruction.py
+++ /dev/null
@@ -1,131 +0,0 @@
-#!/usr/bin/env python
-
-import scipy, math, pylab
-from scipy import fftpack
-from gnuradio import gr, digital, blks2
-
-fftlen = 8192
-
-def main():
- N = 10000
- fs = 2000.0
- Ts = 1.0/fs
- t = scipy.arange(0, N*Ts, Ts)
-
- # When playing with the number of channels, be careful about the filter
- # specs and the channel map of the synthesizer set below.
- nchans = 10
-
- # Build the filter(s)
- bw = 1000
- tb = 400
- proto_taps = gr.firdes.low_pass_2(1, nchans*fs, bw, tb, 80,
- gr.firdes.WIN_BLACKMAN_hARRIS)
- print "Filter length: ", len(proto_taps)
-
-
- # Create a modulated signal
- npwr = 0.01
- data = scipy.random.randint(0, 256, N)
- rrc_taps = gr.firdes.root_raised_cosine(1, 2, 1, 0.35, 41)
-
- src = gr.vector_source_b(data.astype(scipy.uint8).tolist(), False)
- mod = digital.bpsk_mod(samples_per_symbol=2)
- chan = gr.channel_model(npwr)
- rrc = gr.fft_filter_ccc(1, rrc_taps)
-
- # Split it up into pieces
- channelizer = blks2.pfb_channelizer_ccf(nchans, proto_taps, 2)
-
- # Put the pieces back together again
- syn_taps = [nchans*t for t in proto_taps]
- synthesizer = gr.pfb_synthesizer_ccf(nchans, syn_taps, True)
- src_snk = gr.vector_sink_c()
- snk = gr.vector_sink_c()
-
- # Remap the location of the channels
- # Can be done in synth or channelizer (watch out for rotattions in
- # the channelizer)
- synthesizer.set_channel_map([ 0, 1, 2, 3, 4,
- 15, 16, 17, 18, 19])
-
- tb = gr.top_block()
- tb.connect(src, mod, chan, rrc, channelizer)
- tb.connect(rrc, src_snk)
-
- vsnk = []
- for i in xrange(nchans):
- tb.connect((channelizer,i), (synthesizer, i))
-
- vsnk.append(gr.vector_sink_c())
- tb.connect((channelizer,i), vsnk[i])
-
- tb.connect(synthesizer, snk)
- tb.run()
-
- sin = scipy.array(src_snk.data()[1000:])
- sout = scipy.array(snk.data()[1000:])
-
-
- # Plot original signal
- fs_in = nchans*fs
- f1 = pylab.figure(1, figsize=(16,12), facecolor='w')
- s11 = f1.add_subplot(2,2,1)
- s11.psd(sin, NFFT=fftlen, Fs=fs_in)
- s11.set_title("PSD of Original Signal")
- s11.set_ylim([-200, -20])
-
- s12 = f1.add_subplot(2,2,2)
- s12.plot(sin.real[1000:1500], "o-b")
- s12.plot(sin.imag[1000:1500], "o-r")
- s12.set_title("Original Signal in Time")
-
- start = 1
- skip = 4
- s13 = f1.add_subplot(2,2,3)
- s13.plot(sin.real[start::skip], sin.imag[start::skip], "o")
- s13.set_title("Constellation")
- s13.set_xlim([-2, 2])
- s13.set_ylim([-2, 2])
-
- # Plot channels
- nrows = int(scipy.sqrt(nchans))
- ncols = int(scipy.ceil(float(nchans)/float(nrows)))
-
- f2 = pylab.figure(2, figsize=(16,12), facecolor='w')
- for n in xrange(nchans):
- s = f2.add_subplot(nrows, ncols, n+1)
- s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in)
- s.set_title("Channel {0}".format(n))
- s.set_ylim([-200, -20])
-
- # Plot reconstructed signal
- fs_out = 2*nchans*fs
- f3 = pylab.figure(3, figsize=(16,12), facecolor='w')
- s31 = f3.add_subplot(2,2,1)
- s31.psd(sout, NFFT=fftlen, Fs=fs_out)
- s31.set_title("PSD of Reconstructed Signal")
- s31.set_ylim([-200, -20])
-
- s32 = f3.add_subplot(2,2,2)
- s32.plot(sout.real[1000:1500], "o-b")
- s32.plot(sout.imag[1000:1500], "o-r")
- s32.set_title("Reconstructed Signal in Time")
-
- start = 2
- skip = 4
- s33 = f3.add_subplot(2,2,3)
- s33.plot(sout.real[start::skip], sout.imag[start::skip], "o")
- s33.set_title("Constellation")
- s33.set_xlim([-2, 2])
- s33.set_ylim([-2, 2])
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-
diff --git a/gnuradio-examples/python/pfb/resampler.py b/gnuradio-examples/python/pfb/resampler.py
deleted file mode 100755
index 7b296ca71..000000000
--- a/gnuradio-examples/python/pfb/resampler.py
+++ /dev/null
@@ -1,127 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys
-
-try:
- import scipy
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class mytb(gr.top_block):
- def __init__(self, fs_in, fs_out, fc, N=10000):
- gr.top_block.__init__(self)
-
- rerate = float(fs_out) / float(fs_in)
- print "Resampling from %f to %f by %f " %(fs_in, fs_out, rerate)
-
- # Creating our own taps
- taps = gr.firdes.low_pass_2(32, 32, 0.25, 0.1, 80)
-
- self.src = gr.sig_source_c(fs_in, gr.GR_SIN_WAVE, fc, 1)
- #self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1)
- self.head = gr.head(gr.sizeof_gr_complex, N)
-
- # A resampler with our taps
- self.resamp_0 = blks2.pfb_arb_resampler_ccf(rerate, taps,
- flt_size=32)
-
- # A resampler that just needs a resampling rate.
- # Filter is created for us and designed to cover
- # entire bandwidth of the input signal.
- # An optional atten=XX rate can be used here to
- # specify the out-of-band rejection (default=80).
- self.resamp_1 = blks2.pfb_arb_resampler_ccf(rerate)
-
- self.snk_in = gr.vector_sink_c()
- self.snk_0 = gr.vector_sink_c()
- self.snk_1 = gr.vector_sink_c()
-
- self.connect(self.src, self.head, self.snk_in)
- self.connect(self.head, self.resamp_0, self.snk_0)
- self.connect(self.head, self.resamp_1, self.snk_1)
-
-def main():
- fs_in = 8000
- fs_out = 20000
- fc = 1000
- N = 10000
-
- tb = mytb(fs_in, fs_out, fc, N)
- tb.run()
-
-
- # Plot PSD of signals
- nfftsize = 2048
- fig1 = pylab.figure(1, figsize=(10,10), facecolor="w")
- sp1 = fig1.add_subplot(2,1,1)
- sp1.psd(tb.snk_in.data(), NFFT=nfftsize,
- noverlap=nfftsize/4, Fs = fs_in)
- sp1.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
- sp1.set_xlim([-fs_in/2, fs_in/2])
-
- sp2 = fig1.add_subplot(2,1,2)
- sp2.psd(tb.snk_0.data(), NFFT=nfftsize,
- noverlap=nfftsize/4, Fs = fs_out,
- label="With our filter")
- sp2.psd(tb.snk_1.data(), NFFT=nfftsize,
- noverlap=nfftsize/4, Fs = fs_out,
- label="With auto-generated filter")
- sp2.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
- sp2.set_xlim([-fs_out/2, fs_out/2])
- sp2.legend()
-
- # Plot signals in time
- Ts_in = 1.0/fs_in
- Ts_out = 1.0/fs_out
- t_in = scipy.arange(0, len(tb.snk_in.data())*Ts_in, Ts_in)
- t_out = scipy.arange(0, len(tb.snk_0.data())*Ts_out, Ts_out)
-
- fig2 = pylab.figure(2, figsize=(10,10), facecolor="w")
- sp21 = fig2.add_subplot(2,1,1)
- sp21.plot(t_in, tb.snk_in.data())
- sp21.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
- sp21.set_xlim([t_in[100], t_in[200]])
-
- sp22 = fig2.add_subplot(2,1,2)
- sp22.plot(t_out, tb.snk_0.data(),
- label="With our filter")
- sp22.plot(t_out, tb.snk_1.data(),
- label="With auto-generated filter")
- sp22.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
- r = float(fs_out)/float(fs_in)
- sp22.set_xlim([t_out[r * 100], t_out[r * 200]])
- sp22.legend()
-
- pylab.show()
-
-if __name__ == "__main__":
- main()
-
diff --git a/gnuradio-examples/python/pfb/resampler_demo.grc b/gnuradio-examples/python/pfb/resampler_demo.grc
deleted file mode 100644
index 468636a5c..000000000
--- a/gnuradio-examples/python/pfb/resampler_demo.grc
+++ /dev/null
@@ -1,598 +0,0 @@
-<?xml version='1.0' encoding='ASCII'?>
-<flow_graph>
- <timestamp>Sun Aug 23 11:39:47 2009</timestamp>
- <block>
- <key>options</key>
- <param>
- <key>id</key>
- <value>resampler_demo</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>title</key>
- <value></value>
- </param>
- <param>
- <key>author</key>
- <value></value>
- </param>
- <param>
- <key>description</key>
- <value></value>
- </param>
- <param>
- <key>window_size</key>
- <value>1280, 1024</value>
- </param>
- <param>
- <key>generate_options</key>
- <value>wx_gui</value>
- </param>
- <param>
- <key>category</key>
- <value>Custom</value>
- </param>
- <param>
- <key>run</key>
- <value>True</value>
- </param>
- <param>
- <key>realtime_scheduling</key>
- <value></value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(10, 10)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>import</key>
- <param>
- <key>id</key>
- <value>import_0</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>import</key>
- <value>import math</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(11, 59)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>variable</key>
- <param>
- <key>id</key>
- <value>rs_taps</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>value</key>
- <value>firdes.low_pass(nphases, nphases, frac_bw, 0.5-frac_bw)</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(273, 154)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>gr_add_const_vxx</key>
- <param>
- <key>id</key>
- <value>adder</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>type</key>
- <value>float</value>
- </param>
- <param>
- <key>const</key>
- <value>-1.0</value>
- </param>
- <param>
- <key>vlen</key>
- <value>1</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(227, 303)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>gr_throttle</key>
- <param>
- <key>id</key>
- <value>throttle</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>type</key>
- <value>float</value>
- </param>
- <param>
- <key>samples_per_second</key>
- <value>samp_rate</value>
- </param>
- <param>
- <key>vlen</key>
- <value>1</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(227, 493)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>wxgui_fftsink2</key>
- <param>
- <key>id</key>
- <value>orig_fft</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>type</key>
- <value>complex</value>
- </param>
- <param>
- <key>title</key>
- <value>Original Spectrum</value>
- </param>
- <param>
- <key>samp_rate</key>
- <value>samp_rate</value>
- </param>
- <param>
- <key>baseband_freq</key>
- <value>0</value>
- </param>
- <param>
- <key>y_per_div</key>
- <value>10</value>
- </param>
- <param>
- <key>y_divs</key>
- <value>10</value>
- </param>
- <param>
- <key>ref_level</key>
- <value>30</value>
- </param>
- <param>
- <key>fft_size</key>
- <value>1024</value>
- </param>
- <param>
- <key>fft_rate</key>
- <value>30</value>
- </param>
- <param>
- <key>peak_hold</key>
- <value>False</value>
- </param>
- <param>
- <key>average</key>
- <value>False</value>
- </param>
- <param>
- <key>avg_alpha</key>
- <value>0</value>
- </param>
- <param>
- <key>grid_pos</key>
- <value>1, 0, 1, 3</value>
- </param>
- <param>
- <key>notebook</key>
- <value></value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(409, 289)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>180</value>
- </param>
- </block>
- <block>
- <key>wxgui_fftsink2</key>
- <param>
- <key>id</key>
- <value>resamp_fft</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>type</key>
- <value>complex</value>
- </param>
- <param>
- <key>title</key>
- <value>Resampled Spectrum</value>
- </param>
- <param>
- <key>samp_rate</key>
- <value>new_rate</value>
- </param>
- <param>
- <key>baseband_freq</key>
- <value>0</value>
- </param>
- <param>
- <key>y_per_div</key>
- <value>10</value>
- </param>
- <param>
- <key>y_divs</key>
- <value>10</value>
- </param>
- <param>
- <key>ref_level</key>
- <value>30</value>
- </param>
- <param>
- <key>fft_size</key>
- <value>1024</value>
- </param>
- <param>
- <key>fft_rate</key>
- <value>30</value>
- </param>
- <param>
- <key>peak_hold</key>
- <value>True</value>
- </param>
- <param>
- <key>average</key>
- <value>False</value>
- </param>
- <param>
- <key>avg_alpha</key>
- <value>0</value>
- </param>
- <param>
- <key>grid_pos</key>
- <value>2, 0, 1, 3</value>
- </param>
- <param>
- <key>notebook</key>
- <value></value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(640, 256)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>180</value>
- </param>
- </block>
- <block>
- <key>gr_sig_source_x</key>
- <param>
- <key>id</key>
- <value>tri_source</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>type</key>
- <value>float</value>
- </param>
- <param>
- <key>samp_rate</key>
- <value>samp_rate</value>
- </param>
- <param>
- <key>waveform</key>
- <value>gr.GR_TRI_WAVE</value>
- </param>
- <param>
- <key>freq</key>
- <value>0.05</value>
- </param>
- <param>
- <key>amp</key>
- <value>2.0</value>
- </param>
- <param>
- <key>offset</key>
- <value>0</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(21, 271)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>gr_frequency_modulator_fc</key>
- <param>
- <key>id</key>
- <value>fm_mod</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>sensitivity</key>
- <value>math.pi</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(411, 493)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>blks2_pfb_arb_resampler_ccf</key>
- <param>
- <key>id</key>
- <value>resampler</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>rate</key>
- <value>float(new_rate)/samp_rate</value>
- </param>
- <param>
- <key>taps</key>
- <value>rs_taps</value>
- </param>
- <param>
- <key>size</key>
- <value>nphases</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(641, 477)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>variable</key>
- <param>
- <key>id</key>
- <value>nphases</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>value</key>
- <value>32</value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(185, 153)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>variable_static_text</key>
- <param>
- <key>id</key>
- <value>samp_rate</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>label</key>
- <value>Sample Rate</value>
- </param>
- <param>
- <key>value</key>
- <value>44100</value>
- </param>
- <param>
- <key>converver</key>
- <value>float_converter</value>
- </param>
- <param>
- <key>formatter</key>
- <value>None</value>
- </param>
- <param>
- <key>grid_pos</key>
- <value>0, 0, 1, 1</value>
- </param>
- <param>
- <key>notebook</key>
- <value></value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(179, 14)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>variable_static_text</key>
- <param>
- <key>id</key>
- <value>new_rate</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>label</key>
- <value>Resampled Rate</value>
- </param>
- <param>
- <key>value</key>
- <value>48000</value>
- </param>
- <param>
- <key>converver</key>
- <value>float_converter</value>
- </param>
- <param>
- <key>formatter</key>
- <value>None</value>
- </param>
- <param>
- <key>grid_pos</key>
- <value>0, 1, 1, 1</value>
- </param>
- <param>
- <key>notebook</key>
- <value></value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(328, 15)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <block>
- <key>variable_static_text</key>
- <param>
- <key>id</key>
- <value>frac_bw</value>
- </param>
- <param>
- <key>_enabled</key>
- <value>True</value>
- </param>
- <param>
- <key>label</key>
- <value>Fractional Bandwidth</value>
- </param>
- <param>
- <key>value</key>
- <value>0.45</value>
- </param>
- <param>
- <key>converver</key>
- <value>float_converter</value>
- </param>
- <param>
- <key>formatter</key>
- <value>lambda x: "%0.2f"%x</value>
- </param>
- <param>
- <key>grid_pos</key>
- <value>0,2,1,1</value>
- </param>
- <param>
- <key>notebook</key>
- <value></value>
- </param>
- <param>
- <key>_coordinate</key>
- <value>(473, 14)</value>
- </param>
- <param>
- <key>_rotation</key>
- <value>0</value>
- </param>
- </block>
- <connection>
- <source_block_id>tri_source</source_block_id>
- <sink_block_id>adder</sink_block_id>
- <source_key>0</source_key>
- <sink_key>0</sink_key>
- </connection>
- <connection>
- <source_block_id>adder</source_block_id>
- <sink_block_id>throttle</sink_block_id>
- <source_key>0</source_key>
- <sink_key>0</sink_key>
- </connection>
- <connection>
- <source_block_id>resampler</source_block_id>
- <sink_block_id>resamp_fft</sink_block_id>
- <source_key>0</source_key>
- <sink_key>0</sink_key>
- </connection>
- <connection>
- <source_block_id>fm_mod</source_block_id>
- <sink_block_id>resampler</sink_block_id>
- <source_key>0</source_key>
- <sink_key>0</sink_key>
- </connection>
- <connection>
- <source_block_id>fm_mod</source_block_id>
- <sink_block_id>orig_fft</sink_block_id>
- <source_key>0</source_key>
- <sink_key>0</sink_key>
- </connection>
- <connection>
- <source_block_id>throttle</source_block_id>
- <sink_block_id>fm_mod</sink_block_id>
- <source_key>0</source_key>
- <sink_key>0</sink_key>
- </connection>
-</flow_graph>
diff --git a/gnuradio-examples/python/pfb/synth_filter.py b/gnuradio-examples/python/pfb/synth_filter.py
deleted file mode 100755
index a91edfebf..000000000
--- a/gnuradio-examples/python/pfb/synth_filter.py
+++ /dev/null
@@ -1,83 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2010 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys
-
-try:
- import scipy
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-def main():
- N = 1000000
- fs = 8000
-
- freqs = [100, 200, 300, 400, 500]
- nchans = 7
-
- sigs = list()
- for fi in freqs:
- s = gr.sig_source_c(fs, gr.GR_SIN_WAVE, fi, 1)
- sigs.append(s)
-
- taps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
- print "Num. Taps = %d (taps per filter = %d)" % (len(taps),
- len(taps)/nchans)
- filtbank = gr.pfb_synthesizer_ccf(nchans, taps)
-
- head = gr.head(gr.sizeof_gr_complex, N)
- snk = gr.vector_sink_c()
-
- tb = gr.top_block()
- tb.connect(filtbank, head, snk)
-
- for i,si in enumerate(sigs):
- tb.connect(si, (filtbank, i))
-
- tb.run()
-
- if 1:
- f1 = pylab.figure(1)
- s1 = f1.add_subplot(1,1,1)
- s1.plot(snk.data()[1000:])
-
- fftlen = 2048
- f2 = pylab.figure(2)
- s2 = f2.add_subplot(1,1,1)
- winfunc = scipy.blackman
- s2.psd(snk.data()[10000:], NFFT=fftlen,
- Fs = nchans*fs,
- noverlap=fftlen/4,
- window = lambda d: d*winfunc(fftlen))
-
- pylab.show()
-
-if __name__ == "__main__":
- main()
diff --git a/gnuradio-examples/python/pfb/synth_to_chan.py b/gnuradio-examples/python/pfb/synth_to_chan.py
deleted file mode 100755
index c6c80b2f8..000000000
--- a/gnuradio-examples/python/pfb/synth_to_chan.py
+++ /dev/null
@@ -1,117 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2010 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys
-
-try:
- import scipy
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-def main():
- N = 1000000
- fs = 8000
-
- freqs = [100, 200, 300, 400, 500]
- nchans = 7
-
- sigs = list()
- fmtx = list()
- for fi in freqs:
- s = gr.sig_source_f(fs, gr.GR_SIN_WAVE, fi, 1)
- fm = blks2.nbfm_tx (fs, 4*fs, max_dev=10000, tau=75e-6)
- sigs.append(s)
- fmtx.append(fm)
-
- syntaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
- print "Synthesis Num. Taps = %d (taps per filter = %d)" % (len(syntaps),
- len(syntaps)/nchans)
- chtaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
- print "Channelizer Num. Taps = %d (taps per filter = %d)" % (len(chtaps),
- len(chtaps)/nchans)
- filtbank = gr.pfb_synthesizer_ccf(nchans, syntaps)
- channelizer = blks2.pfb_channelizer_ccf(nchans, chtaps)
-
- noise_level = 0.01
- head = gr.head(gr.sizeof_gr_complex, N)
- noise = gr.noise_source_c(gr.GR_GAUSSIAN, noise_level)
- addnoise = gr.add_cc()
- snk_synth = gr.vector_sink_c()
-
- tb = gr.top_block()
-
- tb.connect(noise, (addnoise,0))
- tb.connect(filtbank, head, (addnoise, 1))
- tb.connect(addnoise, channelizer)
- tb.connect(addnoise, snk_synth)
-
- snk = list()
- for i,si in enumerate(sigs):
- tb.connect(si, fmtx[i], (filtbank, i))
-
- for i in xrange(nchans):
- snk.append(gr.vector_sink_c())
- tb.connect((channelizer, i), snk[i])
-
- tb.run()
-
- if 1:
- channel = 1
- data = snk[channel].data()[1000:]
-
- f1 = pylab.figure(1)
- s1 = f1.add_subplot(1,1,1)
- s1.plot(data[10000:10200] )
- s1.set_title(("Output Signal from Channel %d" % channel))
-
- fftlen = 2048
- winfunc = scipy.blackman
- #winfunc = scipy.hamming
-
- f2 = pylab.figure(2)
- s2 = f2.add_subplot(1,1,1)
- s2.psd(data, NFFT=fftlen,
- Fs = nchans*fs,
- noverlap=fftlen/4,
- window = lambda d: d*winfunc(fftlen))
- s2.set_title(("Output PSD from Channel %d" % channel))
-
- f3 = pylab.figure(3)
- s3 = f3.add_subplot(1,1,1)
- s3.psd(snk_synth.data()[1000:], NFFT=fftlen,
- Fs = nchans*fs,
- noverlap=fftlen/4,
- window = lambda d: d*winfunc(fftlen))
- s3.set_title("Output of Synthesis Filter")
-
- pylab.show()
-
-if __name__ == "__main__":
- main()