diff options
Diffstat (limited to 'gnuradio-examples/python/pfb/interpolate.py')
-rwxr-xr-x | gnuradio-examples/python/pfb/interpolate.py | 233 |
1 files changed, 0 insertions, 233 deletions
diff --git a/gnuradio-examples/python/pfb/interpolate.py b/gnuradio-examples/python/pfb/interpolate.py deleted file mode 100755 index 370cf26a7..000000000 --- a/gnuradio-examples/python/pfb/interpolate.py +++ /dev/null @@ -1,233 +0,0 @@ -#!/usr/bin/env python -# -# Copyright 2009 Free Software Foundation, Inc. -# -# This file is part of GNU Radio -# -# GNU Radio is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 3, or (at your option) -# any later version. -# -# GNU Radio is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with GNU Radio; see the file COPYING. If not, write to -# the Free Software Foundation, Inc., 51 Franklin Street, -# Boston, MA 02110-1301, USA. -# - -from gnuradio import gr, blks2 -import sys, time - -try: - import scipy - from scipy import fftpack -except ImportError: - print "Error: Program requires scipy (see: www.scipy.org)." - sys.exit(1) - -try: - import pylab - from pylab import mlab -except ImportError: - print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." - sys.exit(1) - -class pfb_top_block(gr.top_block): - def __init__(self): - gr.top_block.__init__(self) - - self._N = 100000 # number of samples to use - self._fs = 2000 # initial sampling rate - self._interp = 5 # Interpolation rate for PFB interpolator - self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler - - # Frequencies of the signals we construct - freq1 = 100 - freq2 = 200 - - # Create a set of taps for the PFB interpolator - # This is based on the post-interpolation sample rate - self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, - attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS) - - # Create a set of taps for the PFB arbitrary resampler - # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes, - # and larger numbers will reduce these even farther - # The taps in this filter are based on a sampling rate of the filter size since it acts - # internally as an interpolator. - flt_size = 32 - self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, - attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS) - - # Calculate the number of taps per channel for our own information - tpc = scipy.ceil(float(len(self._taps)) / float(self._interp)) - print "Number of taps: ", len(self._taps) - print "Number of filters: ", self._interp - print "Taps per channel: ", tpc - - # Create a couple of signals at different frequencies - self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5) - self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5) - self.signal = gr.add_cc() - - self.head = gr.head(gr.sizeof_gr_complex, self._N) - - # Construct the PFB interpolator filter - self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps) - - # Construct the PFB arbitrary resampler filter - self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, flt_size) - self.snk_i = gr.vector_sink_c() - - #self.pfb_ar.pfb.print_taps() - #self.pfb.pfb.print_taps() - - # Connect the blocks - self.connect(self.signal1, self.head, (self.signal,0)) - self.connect(self.signal2, (self.signal,1)) - self.connect(self.signal, self.pfb) - self.connect(self.signal, self.pfb_ar) - self.connect(self.signal, self.snk_i) - - # Create the sink for the interpolated signals - self.snk1 = gr.vector_sink_c() - self.snk2 = gr.vector_sink_c() - self.connect(self.pfb, self.snk1) - self.connect(self.pfb_ar, self.snk2) - - -def main(): - tb = pfb_top_block() - - tstart = time.time() - tb.run() - tend = time.time() - print "Run time: %f" % (tend - tstart) - - - if 1: - fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") - fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") - fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") - - Ns = 10000 - Ne = 10000 - - fftlen = 8192 - winfunc = scipy.blackman - - # Plot input signal - fs = tb._fs - - d = tb.snk_i.data()[Ns:Ns+Ne] - sp1_f = fig1.add_subplot(2, 1, 1) - - X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, - window = lambda d: d*winfunc(fftlen), - scale_by_freq=True) - X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) - f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) - p1_f = sp1_f.plot(f_in, X_in, "b") - sp1_f.set_xlim([min(f_in), max(f_in)+1]) - sp1_f.set_ylim([-200.0, 50.0]) - - - sp1_f.set_title("Input Signal", weight="bold") - sp1_f.set_xlabel("Frequency (Hz)") - sp1_f.set_ylabel("Power (dBW)") - - Ts = 1.0/fs - Tmax = len(d)*Ts - - t_in = scipy.arange(0, Tmax, Ts) - x_in = scipy.array(d) - sp1_t = fig1.add_subplot(2, 1, 2) - p1_t = sp1_t.plot(t_in, x_in.real, "b-o") - #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") - sp1_t.set_ylim([-2.5, 2.5]) - - sp1_t.set_title("Input Signal", weight="bold") - sp1_t.set_xlabel("Time (s)") - sp1_t.set_ylabel("Amplitude") - - - # Plot output of PFB interpolator - fs_int = tb._fs*tb._interp - - sp2_f = fig2.add_subplot(2, 1, 1) - d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)] - X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, - window = lambda d: d*winfunc(fftlen), - scale_by_freq=True) - X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) - f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size)) - p2_f = sp2_f.plot(f_o, X_o, "b") - sp2_f.set_xlim([min(f_o), max(f_o)+1]) - sp2_f.set_ylim([-200.0, 50.0]) - - sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold") - sp2_f.set_xlabel("Frequency (Hz)") - sp2_f.set_ylabel("Power (dBW)") - - Ts_int = 1.0/fs_int - Tmax = len(d)*Ts_int - - t_o = scipy.arange(0, Tmax, Ts_int) - x_o1 = scipy.array(d) - sp2_t = fig2.add_subplot(2, 1, 2) - p2_t = sp2_t.plot(t_o, x_o1.real, "b-o") - #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") - sp2_t.set_ylim([-2.5, 2.5]) - - sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold") - sp2_t.set_xlabel("Time (s)") - sp2_t.set_ylabel("Amplitude") - - - # Plot output of PFB arbitrary resampler - fs_aint = tb._fs * tb._ainterp - - sp3_f = fig3.add_subplot(2, 1, 1) - d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)] - X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, - window = lambda d: d*winfunc(fftlen), - scale_by_freq=True) - X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) - f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size)) - p3_f = sp3_f.plot(f_o, X_o, "b") - sp3_f.set_xlim([min(f_o), max(f_o)+1]) - sp3_f.set_ylim([-200.0, 50.0]) - - sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") - sp3_f.set_xlabel("Frequency (Hz)") - sp3_f.set_ylabel("Power (dBW)") - - Ts_aint = 1.0/fs_aint - Tmax = len(d)*Ts_aint - - t_o = scipy.arange(0, Tmax, Ts_aint) - x_o2 = scipy.array(d) - sp3_f = fig3.add_subplot(2, 1, 2) - p3_f = sp3_f.plot(t_o, x_o2.real, "b-o") - p3_f = sp3_f.plot(t_o, x_o1.real, "m-o") - #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o") - sp3_f.set_ylim([-2.5, 2.5]) - - sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") - sp3_f.set_xlabel("Time (s)") - sp3_f.set_ylabel("Amplitude") - - pylab.show() - - -if __name__ == "__main__": - try: - main() - except KeyboardInterrupt: - pass - |