diff options
Diffstat (limited to 'gnuradio-examples/python/digital/README')
-rw-r--r-- | gnuradio-examples/python/digital/README | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/gnuradio-examples/python/digital/README b/gnuradio-examples/python/digital/README new file mode 100644 index 000000000..adc3fe078 --- /dev/null +++ b/gnuradio-examples/python/digital/README @@ -0,0 +1,77 @@ +Quick overview of what's here: + +* benchmark_tx.py: generates packets of the size you +specify and sends them across the air using the USRP. Known to work +well using the USRP with the RFX transceiver daughterboards. +You can specify the bitrate to use with the -r <bitrate> command line +parameter. The default is 500k. Some machines will do 1M or more. +You can select the modulation to use with the -m <modulation> command +line argument. The legal values for <modulation> are gmsk, dbpsk and dqpsk. + +* benchmark_tx.py: the receiver half of benchmark_tx.py. +Command line arguments are pretty much the same as rx. Works well +with a USRP and RFX transceiver daughterboards. Will also work +with TVRX daugherboard, but you'll need to fiddle with the gain. See +below. Prints a summary of each packet received and keeps a running +total of packets received, and how many of them were error free. +There are two levels of error reporting going on. If the access code +(PN code) and header of a packet were properly detected, then you'll +get an output line. If the CRC32 of the payload was correct you get +"ok = True", else "ok = False". The "pktno" is extracted from the +received packet. If there are skipped numbers, you're missing some +packets. Be sure you've got a suitable antenna connected to the TX/RX +port on each board. For the RFX-400, "70 cm" / 420 MHz antennas for ham +handi-talkies work great. These are available at ham radio supplies, +etc. The boards need to be at least 3m apart. You can also try +experimenting with the rx gain (-g <gain> command line option). + +Generally speaking, I start the rx first on one machine, and then fire +up the tx on the other machine. The tx also supports a discontinous +transmission mode where it sends bursts of 5 packets and then waits 1 +second. This is useful for ensuring that all the receiver control +loops lock up fast enough. + +* tunnel.py: This program provides a framework for building your own +MACs. It creates a "TAP" interface in the kernel, typically gr0, +and sends and receives ethernet frames through it. See +/usr/src/linux/Documentation/networking/tuntap.txt and/or Google for +"universal tun tap". The Linux 2.6 kernel includes the tun module, you +don't have to build it. You may have to "modprobe tun" if it's not +loaded by default. If /dev/net/tun doesn't exist, try "modprobe tun". + +To run this program you'll need to be root or running with the +appropriate capability to open the tun interface. You'll need to fire +up two copies on different machines. Once each is running you'll need +to ifconfig the gr0 interface to set the IP address. + +This will allow two machines to talk, but anything beyond the two +machines depends on your networking setup. Left as an exercise... + +On machine A: + + $ su + # ./tunnel.py --freq 423.0M --bitrate 500k + # # in another window on A, also as root... + # ifconfig gr0 192.168.200.1 + + +On machine B: + + $ su + # ./tunnel.py --freq 423.0M --bitrate 500k + # # in another window on B, also as root... + # ifconfig gr0 192.168.200.2 + +Now, on machine A you shold be able to ping machine B: + + $ ping 192.168.200.2 + +and you should see some output for each packet in the +tunnel.py window if you used the -v option. + +Likewise, on machine B: + + $ ping 192.168.200.1 + +This now uses a carrier sense MAC, so you should be able to ssh +between the machines, web browse, etc. |