summaryrefslogtreecommitdiff
path: root/gnuradio-core
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-core')
-rw-r--r--gnuradio-core/src/python/gnuradio/blks2impl/ofdm_sync_pnac.py74
1 files changed, 43 insertions, 31 deletions
diff --git a/gnuradio-core/src/python/gnuradio/blks2impl/ofdm_sync_pnac.py b/gnuradio-core/src/python/gnuradio/blks2impl/ofdm_sync_pnac.py
index 89f70ed2b..10a125964 100644
--- a/gnuradio-core/src/python/gnuradio/blks2impl/ofdm_sync_pnac.py
+++ b/gnuradio-core/src/python/gnuradio/blks2impl/ofdm_sync_pnac.py
@@ -26,7 +26,25 @@ from gnuradio import gr
class ofdm_sync_pnac(gr.hier_block2):
def __init__(self, fft_length, cp_length, kstime, logging=False):
-
+ """
+ OFDM synchronization using PN Correlation and initial cross-correlation:
+ F. Tufvesson, O. Edfors, and M. Faulkner, "Time and Frequency Synchronization for OFDM using
+ PN-Sequency Preambles," IEEE Proc. VTC, 1999, pp. 2203-2207.
+
+ This implementation is meant to be a more robust version of the Schmidl and Cox receiver design.
+ By correlating against the preamble and using that as the input to the time-delayed correlation,
+ this circuit produces a very clean timing signal at the end of the preamble. The timing is
+ more accurate and does not have the problem associated with determining the timing from the
+ plateau structure in the Schmidl and Cox.
+
+ This implementation appears to require that the signal is received with a normalized power or signal
+ scalling factor to reduce ambiguities intorduced from partial correlation of the cyclic prefix and
+ the peak detection. A better peak detection block might fix this.
+
+ Also, the cross-correlation falls apart as the frequency offset gets larger and completely fails
+ when an integer offset is introduced. Another thing to look at.
+ """
+
gr.hier_block2.__init__(self, "ofdm_sync_pnac",
gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature
@@ -42,7 +60,6 @@ class ofdm_sync_pnac(gr.hier_block2):
kstime = [k.conjugate() for k in kstime[0:fft_length//2]]
kstime.reverse()
self.crosscorr_filter = gr.fir_filter_ccc(1, kstime)
- self.connect(self.crosscorr_filter, gr.file_sink(gr.sizeof_gr_complex, "crosscorr.dat"))
# Create a delay line
self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2)
@@ -51,63 +68,58 @@ class ofdm_sync_pnac(gr.hier_block2):
self.conjg = gr.conjugate_cc();
self.corr = gr.multiply_cc();
- # Create a moving sum filter for the corr output
- moving_sum_taps = [1.0 for i in range(fft_length//2)]
- self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps)
-
# Create a moving sum filter for the input
- self.inputmag2 = gr.complex_to_mag_squared()
- movingsum2_taps = [1.0 for i in range(fft_length//2)]
- self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps)
- self.square = gr.multiply_ff()
- self.normalize = gr.divide_ff()
+ self.mag = gr.complex_to_mag_squared()
+ movingsum_taps = (fft_length//1)*[1.0,]
+ self.power = gr.fir_filter_fff(1,movingsum_taps)
# Get magnitude (peaks) and angle (phase/freq error)
self.c2mag = gr.complex_to_mag_squared()
self.angle = gr.complex_to_arg()
-
+ self.compare = gr.sub_ff()
+
self.sample_and_hold = gr.sample_and_hold_ff()
#ML measurements input to sampler block and detect
- self.sub1 = gr.add_const_ff(-1)
- self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001)
+ self.threshold = gr.threshold_ff(0,0,0) # threshold detection might need to be tweaked
+ self.peaks = gr.float_to_char()
self.connect(self, self.input)
# Cross-correlate input signal with known preamble
self.connect(self.input, self.crosscorr_filter)
- # use the output of the cross-correlation as input to Schmidl&Cox
+ # use the output of the cross-correlation as input time-shifted correlation
self.connect(self.crosscorr_filter, self.delay)
self.connect(self.crosscorr_filter, (self.corr,0))
self.connect(self.delay, self.conjg)
self.connect(self.conjg, (self.corr,1))
- self.connect(self.corr, self.moving_sum_filter)
- self.connect(self.moving_sum_filter, self.c2mag)
- self.connect(self.moving_sum_filter, self.angle)
+ self.connect(self.corr, self.c2mag)
+ self.connect(self.corr, self.angle)
self.connect(self.angle, (self.sample_and_hold,0))
+
+ # Get the power of the input signal to compare against the correlation
+ self.connect(self.crosscorr_filter, self.mag, self.power)
- # Get the power of the input signal to normalize the output of the correlation
- self.connect(self.crosscorr_filter, self.inputmag2, self.inputmovingsum)
- self.connect(self.inputmovingsum, (self.square,0))
- self.connect(self.inputmovingsum, (self.square,1))
- self.connect(self.square, (self.normalize,1))
- self.connect(self.c2mag, (self.normalize,0))
-
- self.connect(self.normalize, self.sub1, self.pk_detect)
- self.connect(self.pk_detect, (self.sample_and_hold,1))
+ # Compare the power to the correlator output to determine timing peak
+ # When the peak occurs, it peaks above zero, so the thresholder detects this
+ self.connect(self.c2mag, (self.compare,0))
+ self.connect(self.power, (self.compare,1))
+ self.connect(self.compare, self.threshold)
+ self.connect(self.threshold, self.peaks, (self.sample_and_hold,1))
# Set output signals
# Output 0: fine frequency correction value
# Output 1: timing signal
self.connect(self.sample_and_hold, (self,0))
- self.connect(self.pk_detect, (self,1))
+ self.connect(self.peaks, (self,1))
if logging:
+ self.connect(self.compare, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-compare_f.dat"))
self.connect(self.c2mag, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-theta_f.dat"))
- self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-normalized_f.dat"))
- self.connect(self.sub1, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-sub1_f.dat"))
+ self.connect(self.power, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-inputpower_f.dat"))
self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-epsilon_f.dat"))
- self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pnac-peaks_b.dat"))
+ self.connect(self.threshold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-threshold_f.dat"))
+ self.connect(self.peaks, gr.file_sink(gr.sizeof_char, "ofdm_sync_pnac-peaks_b.dat"))
self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-sample_and_hold_f.dat"))
self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pnac-input_c.dat"))