diff options
Diffstat (limited to 'gnuradio-core/src/examples/pfb/interpolate.py')
-rwxr-xr-x | gnuradio-core/src/examples/pfb/interpolate.py | 233 |
1 files changed, 233 insertions, 0 deletions
diff --git a/gnuradio-core/src/examples/pfb/interpolate.py b/gnuradio-core/src/examples/pfb/interpolate.py new file mode 100755 index 000000000..370cf26a7 --- /dev/null +++ b/gnuradio-core/src/examples/pfb/interpolate.py @@ -0,0 +1,233 @@ +#!/usr/bin/env python +# +# Copyright 2009 Free Software Foundation, Inc. +# +# This file is part of GNU Radio +# +# GNU Radio is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3, or (at your option) +# any later version. +# +# GNU Radio is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with GNU Radio; see the file COPYING. If not, write to +# the Free Software Foundation, Inc., 51 Franklin Street, +# Boston, MA 02110-1301, USA. +# + +from gnuradio import gr, blks2 +import sys, time + +try: + import scipy + from scipy import fftpack +except ImportError: + print "Error: Program requires scipy (see: www.scipy.org)." + sys.exit(1) + +try: + import pylab + from pylab import mlab +except ImportError: + print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." + sys.exit(1) + +class pfb_top_block(gr.top_block): + def __init__(self): + gr.top_block.__init__(self) + + self._N = 100000 # number of samples to use + self._fs = 2000 # initial sampling rate + self._interp = 5 # Interpolation rate for PFB interpolator + self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler + + # Frequencies of the signals we construct + freq1 = 100 + freq2 = 200 + + # Create a set of taps for the PFB interpolator + # This is based on the post-interpolation sample rate + self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, + attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS) + + # Create a set of taps for the PFB arbitrary resampler + # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes, + # and larger numbers will reduce these even farther + # The taps in this filter are based on a sampling rate of the filter size since it acts + # internally as an interpolator. + flt_size = 32 + self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, + attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS) + + # Calculate the number of taps per channel for our own information + tpc = scipy.ceil(float(len(self._taps)) / float(self._interp)) + print "Number of taps: ", len(self._taps) + print "Number of filters: ", self._interp + print "Taps per channel: ", tpc + + # Create a couple of signals at different frequencies + self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5) + self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5) + self.signal = gr.add_cc() + + self.head = gr.head(gr.sizeof_gr_complex, self._N) + + # Construct the PFB interpolator filter + self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps) + + # Construct the PFB arbitrary resampler filter + self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, flt_size) + self.snk_i = gr.vector_sink_c() + + #self.pfb_ar.pfb.print_taps() + #self.pfb.pfb.print_taps() + + # Connect the blocks + self.connect(self.signal1, self.head, (self.signal,0)) + self.connect(self.signal2, (self.signal,1)) + self.connect(self.signal, self.pfb) + self.connect(self.signal, self.pfb_ar) + self.connect(self.signal, self.snk_i) + + # Create the sink for the interpolated signals + self.snk1 = gr.vector_sink_c() + self.snk2 = gr.vector_sink_c() + self.connect(self.pfb, self.snk1) + self.connect(self.pfb_ar, self.snk2) + + +def main(): + tb = pfb_top_block() + + tstart = time.time() + tb.run() + tend = time.time() + print "Run time: %f" % (tend - tstart) + + + if 1: + fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") + fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") + fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") + + Ns = 10000 + Ne = 10000 + + fftlen = 8192 + winfunc = scipy.blackman + + # Plot input signal + fs = tb._fs + + d = tb.snk_i.data()[Ns:Ns+Ne] + sp1_f = fig1.add_subplot(2, 1, 1) + + X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, + window = lambda d: d*winfunc(fftlen), + scale_by_freq=True) + X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) + f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) + p1_f = sp1_f.plot(f_in, X_in, "b") + sp1_f.set_xlim([min(f_in), max(f_in)+1]) + sp1_f.set_ylim([-200.0, 50.0]) + + + sp1_f.set_title("Input Signal", weight="bold") + sp1_f.set_xlabel("Frequency (Hz)") + sp1_f.set_ylabel("Power (dBW)") + + Ts = 1.0/fs + Tmax = len(d)*Ts + + t_in = scipy.arange(0, Tmax, Ts) + x_in = scipy.array(d) + sp1_t = fig1.add_subplot(2, 1, 2) + p1_t = sp1_t.plot(t_in, x_in.real, "b-o") + #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") + sp1_t.set_ylim([-2.5, 2.5]) + + sp1_t.set_title("Input Signal", weight="bold") + sp1_t.set_xlabel("Time (s)") + sp1_t.set_ylabel("Amplitude") + + + # Plot output of PFB interpolator + fs_int = tb._fs*tb._interp + + sp2_f = fig2.add_subplot(2, 1, 1) + d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)] + X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, + window = lambda d: d*winfunc(fftlen), + scale_by_freq=True) + X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) + f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size)) + p2_f = sp2_f.plot(f_o, X_o, "b") + sp2_f.set_xlim([min(f_o), max(f_o)+1]) + sp2_f.set_ylim([-200.0, 50.0]) + + sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold") + sp2_f.set_xlabel("Frequency (Hz)") + sp2_f.set_ylabel("Power (dBW)") + + Ts_int = 1.0/fs_int + Tmax = len(d)*Ts_int + + t_o = scipy.arange(0, Tmax, Ts_int) + x_o1 = scipy.array(d) + sp2_t = fig2.add_subplot(2, 1, 2) + p2_t = sp2_t.plot(t_o, x_o1.real, "b-o") + #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") + sp2_t.set_ylim([-2.5, 2.5]) + + sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold") + sp2_t.set_xlabel("Time (s)") + sp2_t.set_ylabel("Amplitude") + + + # Plot output of PFB arbitrary resampler + fs_aint = tb._fs * tb._ainterp + + sp3_f = fig3.add_subplot(2, 1, 1) + d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)] + X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, + window = lambda d: d*winfunc(fftlen), + scale_by_freq=True) + X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) + f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size)) + p3_f = sp3_f.plot(f_o, X_o, "b") + sp3_f.set_xlim([min(f_o), max(f_o)+1]) + sp3_f.set_ylim([-200.0, 50.0]) + + sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") + sp3_f.set_xlabel("Frequency (Hz)") + sp3_f.set_ylabel("Power (dBW)") + + Ts_aint = 1.0/fs_aint + Tmax = len(d)*Ts_aint + + t_o = scipy.arange(0, Tmax, Ts_aint) + x_o2 = scipy.array(d) + sp3_f = fig3.add_subplot(2, 1, 2) + p3_f = sp3_f.plot(t_o, x_o2.real, "b-o") + p3_f = sp3_f.plot(t_o, x_o1.real, "m-o") + #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o") + sp3_f.set_ylim([-2.5, 2.5]) + + sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") + sp3_f.set_xlabel("Time (s)") + sp3_f.set_ylabel("Amplitude") + + pylab.show() + + +if __name__ == "__main__": + try: + main() + except KeyboardInterrupt: + pass + |