summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/examples/pfb/decimate.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-core/src/examples/pfb/decimate.py')
-rwxr-xr-xgnuradio-core/src/examples/pfb/decimate.py178
1 files changed, 178 insertions, 0 deletions
diff --git a/gnuradio-core/src/examples/pfb/decimate.py b/gnuradio-core/src/examples/pfb/decimate.py
new file mode 100755
index 000000000..643a2c241
--- /dev/null
+++ b/gnuradio-core/src/examples/pfb/decimate.py
@@ -0,0 +1,178 @@
+#!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, blks2
+import sys, time
+
+try:
+ import scipy
+ from scipy import fftpack
+except ImportError:
+ print "Error: Program requires scipy (see: www.scipy.org)."
+ sys.exit(1)
+
+try:
+ import pylab
+ from pylab import mlab
+except ImportError:
+ print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
+ sys.exit(1)
+
+class pfb_top_block(gr.top_block):
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ self._N = 10000000 # number of samples to use
+ self._fs = 10000 # initial sampling rate
+ self._decim = 20 # Decimation rate
+
+ # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth
+ self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 150,
+ attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+ # Calculate the number of taps per channel for our own information
+ tpc = scipy.ceil(float(len(self._taps)) / float(self._decim))
+ print "Number of taps: ", len(self._taps)
+ print "Number of filters: ", self._decim
+ print "Taps per channel: ", tpc
+
+ # Build the input signal source
+ # We create a list of freqs, and a sine wave is generated and added to the source
+ # for each one of these frequencies.
+ self.signals = list()
+ self.add = gr.add_cc()
+ freqs = [10, 20, 2040]
+ for i in xrange(len(freqs)):
+ self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
+ self.connect(self.signals[i], (self.add,i))
+
+ self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+ # Construct a PFB decimator filter
+ self.pfb = blks2.pfb_decimator_ccf(self._decim, self._taps, 0)
+
+ # Construct a standard FIR decimating filter
+ self.dec = gr.fir_filter_ccf(self._decim, self._taps)
+
+ self.snk_i = gr.vector_sink_c()
+
+ # Connect the blocks
+ self.connect(self.add, self.head, self.pfb)
+ self.connect(self.add, self.snk_i)
+
+ # Create the sink for the decimated siganl
+ self.snk = gr.vector_sink_c()
+ self.connect(self.pfb, self.snk)
+
+
+def main():
+ tb = pfb_top_block()
+
+ tstart = time.time()
+ tb.run()
+ tend = time.time()
+ print "Run time: %f" % (tend - tstart)
+
+ if 1:
+ fig1 = pylab.figure(1, figsize=(16,9))
+ fig2 = pylab.figure(2, figsize=(16,9))
+
+ Ns = 10000
+ Ne = 10000
+
+ fftlen = 8192
+ winfunc = scipy.blackman
+ fs = tb._fs
+
+ # Plot the input to the decimator
+
+ d = tb.snk_i.data()[Ns:Ns+Ne]
+ sp1_f = fig1.add_subplot(2, 1, 1)
+
+ X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+ window = lambda d: d*winfunc(fftlen),
+ scale_by_freq=True)
+ X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+ p1_f = sp1_f.plot(f_in, X_in, "b")
+ sp1_f.set_xlim([min(f_in), max(f_in)+1])
+ sp1_f.set_ylim([-200.0, 50.0])
+
+ sp1_f.set_title("Input Signal", weight="bold")
+ sp1_f.set_xlabel("Frequency (Hz)")
+ sp1_f.set_ylabel("Power (dBW)")
+
+ Ts = 1.0/fs
+ Tmax = len(d)*Ts
+
+ t_in = scipy.arange(0, Tmax, Ts)
+ x_in = scipy.array(d)
+ sp1_t = fig1.add_subplot(2, 1, 2)
+ p1_t = sp1_t.plot(t_in, x_in.real, "b")
+ p1_t = sp1_t.plot(t_in, x_in.imag, "r")
+ sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1])
+
+ sp1_t.set_xlabel("Time (s)")
+ sp1_t.set_ylabel("Amplitude")
+
+
+ # Plot the output of the decimator
+ fs_o = tb._fs / tb._decim
+
+ sp2_f = fig2.add_subplot(2, 1, 1)
+ d = tb.snk.data()[Ns:Ns+Ne]
+ X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+ window = lambda d: d*winfunc(fftlen),
+ scale_by_freq=True)
+ X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+ p2_f = sp2_f.plot(f_o, X_o, "b")
+ sp2_f.set_xlim([min(f_o), max(f_o)+1])
+ sp2_f.set_ylim([-200.0, 50.0])
+
+ sp2_f.set_title("PFB Decimated Signal", weight="bold")
+ sp2_f.set_xlabel("Frequency (Hz)")
+ sp2_f.set_ylabel("Power (dBW)")
+
+
+ Ts_o = 1.0/fs_o
+ Tmax_o = len(d)*Ts_o
+
+ x_o = scipy.array(d)
+ t_o = scipy.arange(0, Tmax_o, Ts_o)
+ sp2_t = fig2.add_subplot(2, 1, 2)
+ p2_t = sp2_t.plot(t_o, x_o.real, "b-o")
+ p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
+ sp2_t.set_ylim([-2.5, 2.5])
+
+ sp2_t.set_xlabel("Time (s)")
+ sp2_t.set_ylabel("Amplitude")
+
+ pylab.show()
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+