summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/examples/pfb/chirp_channelize.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-core/src/examples/pfb/chirp_channelize.py')
-rwxr-xr-xgnuradio-core/src/examples/pfb/chirp_channelize.py203
1 files changed, 203 insertions, 0 deletions
diff --git a/gnuradio-core/src/examples/pfb/chirp_channelize.py b/gnuradio-core/src/examples/pfb/chirp_channelize.py
new file mode 100755
index 000000000..951255d3b
--- /dev/null
+++ b/gnuradio-core/src/examples/pfb/chirp_channelize.py
@@ -0,0 +1,203 @@
+#!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, blks2
+import sys, time
+
+try:
+ import scipy
+ from scipy import fftpack
+except ImportError:
+ print "Error: Program requires scipy (see: www.scipy.org)."
+ sys.exit(1)
+
+try:
+ import pylab
+ from pylab import mlab
+except ImportError:
+ print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
+ sys.exit(1)
+
+class pfb_top_block(gr.top_block):
+ def __init__(self):
+ gr.top_block.__init__(self)
+
+ self._N = 200000 # number of samples to use
+ self._fs = 9000 # initial sampling rate
+ self._M = 9 # Number of channels to channelize
+
+ # Create a set of taps for the PFB channelizer
+ self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20,
+ attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+ # Calculate the number of taps per channel for our own information
+ tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
+ print "Number of taps: ", len(self._taps)
+ print "Number of channels: ", self._M
+ print "Taps per channel: ", tpc
+
+ repeated = True
+ if(repeated):
+ self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
+ else:
+ amp = 100
+ data = scipy.arange(0, amp, amp/float(self._N))
+ self.vco_input = gr.vector_source_f(data, False)
+
+ # Build a VCO controlled by either the sinusoid or single chirp tone
+ # Then convert this to a complex signal
+ self.vco = gr.vco_f(self._fs, 225, 1)
+ self.f2c = gr.float_to_complex()
+
+ self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+ # Construct the channelizer filter
+ self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+
+ # Construct a vector sink for the input signal to the channelizer
+ self.snk_i = gr.vector_sink_c()
+
+ # Connect the blocks
+ self.connect(self.vco_input, self.vco, self.f2c)
+ self.connect(self.f2c, self.head, self.pfb)
+ self.connect(self.f2c, self.snk_i)
+
+ # Create a vector sink for each of M output channels of the filter and connect it
+ self.snks = list()
+ for i in xrange(self._M):
+ self.snks.append(gr.vector_sink_c())
+ self.connect((self.pfb, i), self.snks[i])
+
+
+def main():
+ tstart = time.time()
+
+ tb = pfb_top_block()
+ tb.run()
+
+ tend = time.time()
+ print "Run time: %f" % (tend - tstart)
+
+ if 1:
+ fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
+ fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
+ fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
+ fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
+
+ Ns = 650
+ Ne = 20000
+
+ fftlen = 8192
+ winfunc = scipy.blackman
+ fs = tb._fs
+
+ # Plot the input signal on its own figure
+ d = tb.snk_i.data()[Ns:Ne]
+ spin_f = fig_in.add_subplot(2, 1, 1)
+
+ X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+ window = lambda d: d*winfunc(fftlen),
+ scale_by_freq=True)
+ X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+ f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+ pin_f = spin_f.plot(f_in, X_in, "b")
+ spin_f.set_xlim([min(f_in), max(f_in)+1])
+ spin_f.set_ylim([-200.0, 50.0])
+
+ spin_f.set_title("Input Signal", weight="bold")
+ spin_f.set_xlabel("Frequency (Hz)")
+ spin_f.set_ylabel("Power (dBW)")
+
+
+ Ts = 1.0/fs
+ Tmax = len(d)*Ts
+
+ t_in = scipy.arange(0, Tmax, Ts)
+ x_in = scipy.array(d)
+ spin_t = fig_in.add_subplot(2, 1, 2)
+ pin_t = spin_t.plot(t_in, x_in.real, "b")
+ pin_t = spin_t.plot(t_in, x_in.imag, "r")
+
+ spin_t.set_xlabel("Time (s)")
+ spin_t.set_ylabel("Amplitude")
+
+ Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
+ Nrows = int(scipy.floor(tb._M / Ncols))
+ if(tb._M % Ncols != 0):
+ Nrows += 1
+
+ # Plot each of the channels outputs. Frequencies on Figure 2 and
+ # time signals on Figure 3
+ fs_o = tb._fs / tb._M
+ Ts_o = 1.0/fs_o
+ Tmax_o = len(d)*Ts_o
+ for i in xrange(len(tb.snks)):
+ # remove issues with the transients at the beginning
+ # also remove some corruption at the end of the stream
+ # this is a bug, probably due to the corner cases
+ d = tb.snks[i].data()[Ns:Ne]
+
+ sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
+ X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+ window = lambda d: d*winfunc(fftlen),
+ scale_by_freq=True)
+ X_o = 10.0*scipy.log10(abs(X))
+ f_o = freq
+ p2_f = sp1_f.plot(f_o, X_o, "b")
+ sp1_f.set_xlim([min(f_o), max(f_o)+1])
+ sp1_f.set_ylim([-200.0, 50.0])
+
+ sp1_f.set_title(("Channel %d" % i), weight="bold")
+ sp1_f.set_xlabel("Frequency (Hz)")
+ sp1_f.set_ylabel("Power (dBW)")
+
+ x_o = scipy.array(d)
+ t_o = scipy.arange(0, Tmax_o, Ts_o)
+ sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
+ p2_o = sp2_o.plot(t_o, x_o.real, "b")
+ p2_o = sp2_o.plot(t_o, x_o.imag, "r")
+ sp2_o.set_xlim([min(t_o), max(t_o)+1])
+ sp2_o.set_ylim([-2, 2])
+
+ sp2_o.set_title(("Channel %d" % i), weight="bold")
+ sp2_o.set_xlabel("Time (s)")
+ sp2_o.set_ylabel("Amplitude")
+
+
+ sp3 = fig3.add_subplot(1,1,1)
+ p3 = sp3.plot(t_o, x_o.real)
+ sp3.set_xlim([min(t_o), max(t_o)+1])
+ sp3.set_ylim([-2, 2])
+
+ sp3.set_title("All Channels")
+ sp3.set_xlabel("Time (s)")
+ sp3.set_ylabel("Amplitude")
+
+ pylab.show()
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except KeyboardInterrupt:
+ pass
+