summaryrefslogtreecommitdiff
path: root/docs/howto-write-a-block/howto-write-a-block.xml
diff options
context:
space:
mode:
Diffstat (limited to 'docs/howto-write-a-block/howto-write-a-block.xml')
-rw-r--r--docs/howto-write-a-block/howto-write-a-block.xml959
1 files changed, 0 insertions, 959 deletions
diff --git a/docs/howto-write-a-block/howto-write-a-block.xml b/docs/howto-write-a-block/howto-write-a-block.xml
deleted file mode 100644
index f8027b456..000000000
--- a/docs/howto-write-a-block/howto-write-a-block.xml
+++ /dev/null
@@ -1,959 +0,0 @@
-<?xml version="1.0" encoding="ISO-8859-1"?>
-<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
- "docbookx.dtd" [
- <!ENTITY gnuradio "<application>GNU Radio</application>">
- <!ENTITY SWIG "<application>SWIG</application>">
- <!ENTITY gr_block "<classname>gr_block</classname>">
- <!ENTITY square "<classname>howto_square_ff</classname>">
-
- <!ENTITY were "we&apos;re">
- <!ENTITY well "we&apos;ll">
- <!ENTITY thats "that&apos;s">
- <!ENTITY its "it&apos;s">
- <!ENTITY lets "let&apos;s">
- <!ENTITY youre "you&apos;re">
-
- <!ENTITY gr_block_listing SYSTEM "gr_block.h.xml">
- <!ENTITY qa_howto_1_listing SYSTEM "qa_howto_1.py.xml">
- <!ENTITY howto_square_ff_h_listing SYSTEM "howto_square_ff.h.xml">
- <!ENTITY howto_square_ff_cc_listing SYSTEM "howto_square_ff.cc.xml">
- <!ENTITY howto_square2_ff_h_listing SYSTEM "howto_square2_ff.h.xml">
- <!ENTITY howto_square2_ff_cc_listing SYSTEM "howto_square2_ff.cc.xml">
- <!ENTITY howto_1_i_listing SYSTEM "howto_1.i.xml">
- <!ENTITY src_lib_Makefile_1_am_listing SYSTEM "src_lib_Makefile_1.am.xml">
- <!ENTITY src_lib_Makefile_2_am_listing SYSTEM "src_lib_Makefile_2.am.xml">
-
-]>
-
-<article>
-
-<articleinfo>
-<title>How to Write a Signal Processing Block</title>
-<author>
- <firstname>Eric</firstname>
- <surname>Blossom</surname>
- <affiliation>
- <address>
- <email>eb@comsec.com</email>
- </address>
- </affiliation>
-</author>
-
-<revhistory>
- <revision>
- <revnumber>0.1</revnumber>
- <date>2005-01-20</date>
- </revision>
- <revision>
- <revnumber>0.2</revnumber>
- <date>2005-02-02</date>
- <revremark>Updated for SWIG 1.3.24</revremark>
- </revision>
- <revision>
- <revnumber>0.3</revnumber>
- <date>2006-07-21</date>
- <revremark>Clarification of 1:1 fixed rate vs item size</revremark>
- </revision>
-</revhistory>
-
-<copyright>
- <year>2004</year>
- <year>2005</year>
- <holder>Free Software Foundation, Inc.</holder>
-</copyright>
-
-<abstract><para>This article explains how to write signal
-processing blocks for <application>GNU Radio</application>.
-</para></abstract>
-
-</articleinfo>
-
-<sect1 id="prereqs"><title>Prerequisites</title>
-<para>This article assumes that the reader has basic familiarity with
-GNU Radio and has read and understood
-<ulink url="http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html">
-<citetitle>Exploring GNU Radio</citetitle></ulink>.
-</para>
-
-<para>There is a tarball of files that accompany this article. It
-includes the examples, DocBook source for the article and all the
-Makefiles etc it takes to make it work. Grab it at <ulink
-url="ftp://ftp.gnu.org/gnu/gnuradio">
-ftp://ftp.gnu.org/gnu/gnuradio</ulink> or one of the mirrors. The
-file you want is
-<filename>gr-howto-write-a-block-X.Y.tar.gz</filename>. Pick the one
-with the highest version number.
-See <ulink url="http://comsec.com/wiki?CvsAccess">
-http://comsec.com/wiki?CvsAccess</ulink> for CVS Access.
-</para>
-
-
-</sect1>
-
-<sect1 id="intro"><title>Introduction</title>
-<para>&gnuradio; provides a framework for building software radios.
-Waveforms -- signal processing applications -- are built using a
-combination of Python code for high level organization, policy, GUI and
-other non performance-critical functions, while performance critical
-signal processing blocks are written in C++.</para>
-
-<para>From the Python point of view, &gnuradio; provides a data flow
-abstraction. The fundamental concepts are signal processing
-blocks and the connections between them. This abstraction is
-implemented by the Python <classname>gr.flow_graph</classname> class.
-Each block has a set of input ports and output ports. Each port has
-an associated data type. The most common port types are
-<classname>float</classname> and <classname>gr_complex</classname>
-(equivalent to std::complex&lt;float&gt;), though other types are used,
-including those representing structures, arrays or other types of
-packetized data.</para>
-
-<para>From the high level point-of-view, infinite streams of data flow
-through the ports. At the C++ level, streams are dealt with in
-convenient sized pieces, represented as contiguous arrays of the
-underlying type.</para>
-
-</sect1>
-
-<sect1 id="overview"><title>The View from 30,000 Feet</title>
-
-<para>This article will walk through the construction of several
-simple signal processing blocks, and explain the techniques and idioms
-used. Later sections cover debugging signal processing blocks in the
-mixed Python/C++ environment and performance measurement and
-optimization.</para>
-
-<para>The example blocks will be built in the style of all &gnuradio;
-extensions. That is, they are built outside of the gnuradio-core build
-tree, and are constructed as shared libraries that may be dynamically
-loaded into Python using the "import" mechanism. &SWIG;, the
-Simplified Wrapper and Interface Generator, is used to generate the
-glue that allows our code to be used from Python.</para>
-
-</sect1>
-
-
-<sect1 id="gr_block"><title></title>
-
-<para>The C++ class &gr_block; is the base of all signal processing
-blocks in &gnuradio;. Writing a new signal processing block involves
-creating 3 files: The .h and .cc files that define the new class and
-the .i file that tells &SWIG; how to generate the glue that binds the
-class into Python. The new class must derive from &gr_block; or
-one of it&apos;s subclasses.</para>
-
-<para>Our first examples will derive directly from &gr_block;. Later
-we will look at some other subclasses that simplify the process for
-common cases.</para>
-
-</sect1><!-- end gr_block sect1 -->
-
-
-
-<!-- ================================================================ -->
-
-<sect1 id="autotools"><title>Autotools, Makefiles, and Directory Layout</title>
-
-<para>Before we dive into the code, &lets; talk a bit about the
-overall build environment and the directory structure that &well;
-be using.</para>
-
-<para>To reduce the amount of Makefile hacking that we have to do, and
-to facilitate portability across a variety of systems, we use the GNU
-<application>autoconf</application>,
-<application>automake</application>, and
-<application>libtool</application> tools. These are collectively
-referred to as the autotools, and once you get over the initial
-shock, they will become your friends. (The good news is that we
-provide boilerplate that can be used pretty much as-is.)</para>
-
-<variablelist>
-
-<varlistentry><term>automake</term>
-
-<listitem><para>automake and configure work together to generate GNU
-compliant Makefiles from a much higher level description contained in
-the corresponding Makefile.am file. <filename>Makefile.am</filename>
-specifies the libraries and programs to build and the source files
-that compose each. Automake reads <filename>Makefile.am</filename>
-and produces <filename>Makefile.in</filename>. Configure reads
-<filename>Makefile.in</filename> and produces
-<filename>Makefile</filename>. The resulting Makefile contains a
-zillion rules that do the right right thing to build, check and
-install your code. It is not uncommon for the the resulting
-<filename>Makefile</filename> to be 5 or 6 times larger than
-<filename>Makefile.am</filename>.</para>
-
-</listitem>
-</varlistentry>
-
-<varlistentry><term>autoconf</term>
-<listitem><para>autoconf reads <filename>configure.ac</filename>
-and produces the <filename>configure</filename> shell
-script. <filename>configure</filename> automatically tests for
-features of the underlying system and sets a bunch of variables and
-defines that can be used in the Makefiles and your C++ code to
-conditionalize the build. If features are required but not found,
-configure will output an error message and stop.</para>
-</listitem>
-</varlistentry>
-
-<varlistentry><term>libtool</term>
-<listitem><para>libtool works behind the scenes and provides the magic
-to construct shared libraries on a wide variety of systems.</para>
-</listitem>
-</varlistentry>
-
-</variablelist>
-
-<para><xref linkend="dir-layout"/> shows the directory layout and
-common files &well; be using. After renaming the
-<replaceable>topdir</replaceable> directory, use it in your projects
-too. We'll talk about particular files as they come up later.</para>
-
-
-<table id="dir-layout"><title>Directory Layout</title>
-<tgroup cols="2">
-
-<thead><row>
-<entry>File/Dir Name</entry>
-<entry>Comment</entry>
-</row>
-</thead>
-
-<tbody>
-
-<row>
-<entry><replaceable>topdir</replaceable>/Makefile.am</entry>
-<entry>Top level Makefile.am</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/Makefile.common</entry>
-<entry>Common fragment included in sub-Makefiles</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/bootstrap</entry>
-<entry>Runs autoconf, automake, libtool first time through</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/config</entry>
-<entry>Directory of m4 macros used by configure.ac</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/configure.ac</entry>
-<entry>Input to autoconf</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/src</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/src/lib</entry>
-<entry>C++ code goes here</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/src/lib/Makefile.am</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/src/python</entry>
-<entry>Python code goes here</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/src/python/Makefile.am</entry>
-</row>
-<row>
-<entry><replaceable>topdir</replaceable>/src/python/run_tests</entry>
-<entry>Script to run tests in the build tree</entry>
-</row>
-
-</tbody>
-</tgroup>
-</table>
-
-</sect1>
-
-<!-- ================================================================ -->
-
-<sect1 id="naming"><title>Naming Conventions</title>
-
-<para>&gnuradio; uses a set of naming conventions to assist in
-comprehending the code base and gluing C++ and Python together.
-Please follow them.</para>
-
-<sect2 id="camel-case"><title><emphasis>Death to CamelCaseNames!</emphasis></title>
-
-<para>We've returned to a kinder, gentler era. We're now using the
-&quot;STL style&quot; naming convention with a couple of modifications
-since we're not using namespaces.</para>
-
-<para>With the exception of macros and other constant values, all
-identifiers shall be lower case with <literal>words_separated_like_this</literal>.</para>
-
-<para>Macros and constant values (e.g., enumerated values,
-<literal>static const int FOO = 23</literal>) shall be in <literal>UPPER_CASE</literal>.</para>
-
-</sect2>
-
-<sect2 id="global_names"><title>Global Names</title>
-
-<para>All globally visible names (types, functions, variables, consts, etc)
-shall begin with a "package prefix", followed by an underscore. The bulk of
-the code in GNU Radio belongs to the "gr" package, hence
-names look like <literal>gr_open_file (...)</literal>.</para>
-
-<para>Large coherent bodies of code may use other package prefixes, but
-let's try to keep them to a well thought out list. See the list
-below.</para>
-
-</sect2>
-
-<sect2 id="package_prefixes"><title>Package Prefixes</title>
-
-<para>These are the current package prefixes:
-
-<variablelist>
-
-<varlistentry><term>gr_</term>
-<listitem><para>Almost everything.</para></listitem>
-</varlistentry>
-
-<varlistentry><term>gri_</term>
-<listitem><para>
-Implementation primitives. Sometimes we
-have both a gr_<replaceable>foo</replaceable> and a gri_<replaceable>foo</replaceable>. In that case,
-gr_<replaceable>foo</replaceable> would be derived from gr_block and gri_<replaceable>foo</replaceable>
-would be the low level guts of the function.</para></listitem>
-</varlistentry>
-
-<varlistentry><term>atsc_</term>
-<listitem><para>Code related to the Advanced Television Standards Committee HDTV implementation
-</para></listitem>
-</varlistentry>
-
-<varlistentry><term>usrp_</term>
-<listitem><para>Universal Software Radio Peripheral.</para></listitem>
-</varlistentry>
-
-<varlistentry><term>qa_</term>
-<listitem><para>Quality Assurance (Test code.)</para></listitem>
-</varlistentry>
-
-</variablelist>
-
-</para>
-</sect2>
-
-<sect2 id="class-data-members"><title>Class Data Members (instance variables)</title>
-
-<para>All class data members shall begin with d_<replaceable>foo</replaceable>.</para>
-
-<para>The big win is when you're staring at a block of code it's obvious
-which of the things being assigned to persist outside of the block.
-This also keeps you from having to be creative with parameter names
-for methods and constructors. You just use the same name as the
-instance variable, without the d_. </para>
-
-<literallayout>
-class gr_wonderfulness {
- std::string d_name;
- double d_wonderfulness_factor;
-
-public:
- gr_wonderfulness (std::string name, double wonderfulness_factor)
- : d_name (name), d_wonderfulness_factor (wonderfulness_factor)
- {
- ...
- }
- ...
-};
-</literallayout>
-
-</sect2>
-
-<sect2 id="static-data-members"><title>Class Static Data Members (class variables)</title>
-
-<para>
-All class static data members shall begin with s_<replaceable>foo</replaceable>.
-</para>
-
-</sect2>
-
-<sect2 id="file-names"><title>File Names</title>
-
-<para>Each significant class shall be contained in its own file. The
-declaration of class <classname>gr_foo</classname> shall be in
-<filename>gr_foo.h</filename> and the definition in
-<filename>gr_foo.cc</filename>.</para>
-</sect2>
-
-
-<sect2><title>Suffixes</title>
-
-<para>By convention, we encode the input and output types of signal
-processing blocks in their name using suffixes. The suffix is
-typically one or two characters long. Source and sinks have single
-character suffixes. Regular blocks that have both inputs and outputs
-have two character suffixes. The first character indicates the type
-of the input streams, the second indicates the type of the output
-streams. FIR filter blocks have a three character suffix, indicating
-the type of the inputs, outputs and taps, respectively.</para>
-
-<para>These are the suffix characters and their interpretations:
-<itemizedlist>
-<listitem><para>f - single precision floating point</para></listitem>
-<listitem><para>c - complex&lt;float&gt;</para></listitem>
-<listitem><para>s - short (16-bit integer)</para></listitem>
-<listitem><para>i - integer (32-bit integer)</para></listitem>
-</itemizedlist>
-</para>
-
-<para>In addition, for those cases where the block deals with streams
-of vectors, we use the character 'v' as the first character of the
-suffix. An example of this usage is
-<classname>gr_fft_vcc</classname>. The FFT block takes a vector of
-complex numbers on its input and produces a vector of complex
-numbers on its output.</para>
-
-</sect2>
-
-</sect1>
-
-
-
-
-<sect1 id="square"><title>First Block: &square;</title>
-
-<para>For our first example &well; create a block that computes
-the square of its single float input. This block will accept a single
-float input stream and produce a single float output stream.</para>
-
-<para>Following the naming conventions, &well; use
-<literal>howto</literal> as our package prefix, and the block will
-be called <classname>howto_square_ff</classname>.</para>
-
-<para>We are going to arrange that this block, as well as the others
-that we write in this article, end up in the
-<literal>gnuradio.howto</literal> Python module. This will allow us
-to access it from Python like this:
-<programlisting>
-from gnuradio import howto
-sqr = howto.square_ff ()
-</programlisting>
-</para>
-
-
-<sect2 id="test_driven"><title>Test Driven Programming</title>
-
-<para>We could just start banging out the C++ code, but being highly
-evolved modern programmers, &were; going to write the test code first.
-After all, we do have a good spec for the behavior: take a single
-stream of floats as the input and produce a single stream of floats as
-the output. The output should be the square of the input.</para>
-
-<para>How hard could this be? Turns out that this is easy! Check out
-<xref linkend="qa_howto_1.py"/>.</para>
-
-<example id="qa_howto_1.py">
-<title><filename>qa_howto.py</filename> (first version)</title>
-&qa_howto_1_listing;
-</example>
-
-<para>
-<classname>gr_unittest</classname> is an extension to the standard
-python module <classname>unittest</classname>.
-<classname>gr_unittest</classname> adds support for checking
-approximate equality of tuples of float and complex numbers.
-Unittest uses Python&apos;s reflection mechanism to find all methods that start with
-<methodname>test_</methodname> and runs them. Unittest wraps each call
-to <methodname>test_*</methodname> with matching calls to
-<methodname>setUp</methodname> and <methodname>tearDown</methodname>.
-See the python <ulink url="http://docs.python.org/lib/module-unittest.html">
-unittest</ulink> documentation for details.
-</para>
-
-<para>When we run the test,
-gr_unittest.main is going to invoke
-<methodname>setUp</methodname>,
-<methodname>test_001_square_ff</methodname>, and
-<methodname>tearDown</methodname>.</para>
-<para>
-<methodname>test_001_square_ff</methodname> builds a small graph that
-contains three nodes. gr.vector_source_f(src_data) will source the
-elements of src_data and then say that &its; finished. howto.square_ff is the block
-&were; testing. gr.vector_sink_f gathers the output of
-howto.square_ff.</para>
-
-<para>The <methodname>run</methodname> method runs the graph until all
-the blocks indicate they are finished. Finally, we check that the
-result of executing square_ff on src_data matches what we expect.
-</para>
-
-</sect2>
-
-<sect2 id="build_vs_install"><title>Build Tree vs. Install Tree</title>
-
-<para>The build tree is everything from <replaceable>topdir</replaceable>
-(the one containing configure.ac) down. The path to the install tree is
-<filename>
-<replaceable>prefix</replaceable>/lib/python<replaceable>version</replaceable>/site-packages</filename>,
-where <replaceable>prefix</replaceable> is the <literal>--prefix</literal>
-argument to configure (default <filename>/usr/local</filename>) and
-<replaceable>version</replaceable> is the installed version of
-python. A typical value is
-<filename>/usr/local/lib/python2.3/site-packages</filename>.</para>
-
-
-<para>We normally set our PYTHONPATH environment variable to point at
-the install tree, and do this in <filename>~/.bash_profile</filename>
-or <filename>~/.profile</filename>.
-This allows our python apps to access all the standard python
-libraries, plus our locally installed stuff like GNU Radio.</para>
-
-<para>We write our applications such that they access the code and
-libraries in the install tree. On the other hand, we want our test
-code to run on the build tree, where we can detect problems before
-installation.</para>
-
-</sect2>
-
-<sect2 id="make_check"><title>make check</title>
-
-
-<para>We use <command>make check</command> to run our tests.
-Make check invokes the <command>run_tests</command> shell script which
-sets up the PYTHONPATH environment variable so that
-our tests use the build tree versions of our code and libraries.
-It then runs all files
-which have names of the form <filename>qa_*.py</filename> and reports
-the overall success or failure.</para>
-
-<para>There is quite a bit of behind-the-scenes action required to use
-the non-installed versions of our code (look at
-<filename>runtest</filename> for a cheap thrill.)</para>
-
-<para>Finally, running <command>make check</command> in the python
-directory produces this result:
-<literallayout>
- [eb@bufo python]$ make check
- make check-TESTS
- make[1]: Entering directory `/home/eb/gr-build/gr-howto-write-a-block/src/python'
- Traceback (most recent call last):
- File "./qa_howto.py", line 24, in ?
- import howto
- ImportError: No module named howto
- Traceback (most recent call last):
- File "./qa_howto_1.py", line 24, in ?
- import howto
- ImportError: No module named howto
- FAIL: run_tests
- ===================
- 1 of 1 tests failed
- ===================
- make[1]: *** [check-TESTS] Error 1
- make[1]: Leaving directory `/home/eb/gr-build/gr-howto-write-a-block/src/python'
- make: *** [check-am] Error 2
- [eb@bufo python]$
-</literallayout>
-Excellent! Our test failed, just as we expected. The ImportError
-indicates that it can't find the module named
-<classname>howto</classname>. No surprise, since we haven't written it yet.
-</para>
-
-</sect2>
-
-<sect2><title>The C++ code</title>
-<para>Now that we've got a test case written that successfully fails,
-let's write the C++ code. As we mentioned earlier, all signal
-processing blocks are derived from <classname>gr_block</classname> or
-one of its subclasses. Let's take a look at
-<xref linkend="gr_block.h"/>.</para>
-
-<example id="gr_block.h">
-<title><filename>gr_block.h</filename></title>
-&gr_block_listing;
-</example>
-
-<para>A quick scan of <filename>gr_block.h</filename> reveals that
-since <methodname>general_work</methodname> is pure virtual, we
-definitely need to override that.
-<methodname>general_work</methodname> is the method that does the
-actual signal processing. For our squaring example we'll
-need to override <methodname>general_work</methodname> and provide a
-constructor and destructor and a bit of stuff to take advantage of
-the <ulink url="http://www.boost.org">boost</ulink>
-<ulink url="http://www.boost.org/libs/smart_ptr/smart_ptr.htm">
-<classname>shared_ptr</classname>s.</ulink>
-
-</para>
-
-
-<para><xref linkend="howto_square_ff.h"/>
-and <xref linkend="howto_square_ff.cc"/> are the header and c++
-source.</para>
-
-<example id="howto_square_ff.h">
-<title><filename>howto_square_ff.h</filename></title>
-&howto_square_ff_h_listing;
-</example>
-
-<example id="howto_square_ff.cc">
-<title><filename>howto_square_ff.cc</filename></title>
-&howto_square_ff_cc_listing;
-</example>
-
-<para>Now we need a Makefile.am to get all this to build.
-<xref linkend="src_lib_Makefile_1"/>
-is enough to build a shared library from our source file. We'll be
-adding additional rules to use &SWIG; in just a bit. If you haven't
-already, this is a good time to browse all the Makefile.am&apos;s in
-the build tree and get an idea for how it all hangs together.</para>
-
-<example id="src_lib_Makefile_1">
-<title><filename>src/lib/Makefile.am</filename> (no &SWIG;)</title>
-&src_lib_Makefile_1_am_listing;
-</example>
-
-</sect2>
-
-
-<!-- ==============================
-
-<sect2 id="io_sig"><title><classname>gr_io_signature</classname></title>
-<para></para>
-</sect2>
-
-<sect2 id="forecast"><title><methodname>forecast</methodname></title>
-<para></para>
-</sect2>
-
-<sect2 id="output_multiple">
-<title><methodname>set_output_multiple</methodname></title>
-<para></para>
-</sect2>
-
- ============================== -->
-
-
-<sect2 id="swig"><title>The &SWIG; .i file</title>
-
-<para>Now that we've got something that will compile, we need to write
-the &SWIG; .i file. This is a pared-down version of the .h file, plus
-a bit of magic that has python work with the boost shared_ptr&apos;s.
-To reduce code bloat, we only declare methods that &well; want to
-access from Python.</para>
-
-<para>We&apos;re going to call the .i file
-<filename>howto.i</filename>, and use it to hold the &SWIG;
-declarations for all classes from <literal>howto</literal> that will
-be accessible from python. It&apos;s quite small:
-&howto_1_i_listing;
-</para>
-
-</sect2>
-
-<sect2><title>Putting it all together</title>
-<para>
-Now we need to modify <filename>src/lib/Makefile.am</filename>
-to run &SWIG; and to add the glue it generates to the shared library.</para>
-
-<example id="src_lib_Makefile_2">
-<title><filename>src/lib/Makefile.am</filename> (with &SWIG;)</title>
-&src_lib_Makefile_2_am_listing;
-</example>
-
-<para><command>make</command> now builds everything successfully. We get a
-few warnings, but &thats; OK.</para>
-
-<para>Changing directories back to the python directory we try
-<command>make check</command> again:
-<literallayout>
- [eb@bufo python]$ make check
- make check-TESTS
- make[1]: Entering directory `/home/eb/gr-build/gr-howto-write-a-block/src/python'
- .
- ----------------------------------------------------------------------
- Ran 1 test in 0.004s
-
- OK
- PASS: run_tests
- ==================
- All 1 tests passed
- ==================
- make[1]: Leaving directory `/home/eb/gr-build/gr-howto-write-a-block/src/python'
- [eb@bufo python]$
-</literallayout>
-<emphasis>Victory! Our new block works!</emphasis>
-</para>
-
-</sect2>
-
-</sect1><!-- end First Block: square -->
-
-<sect1 id="additional_methods"><title>Additional gr_block methods</title>
-
-<para>In our <classname>howto_square_ff</classname> example above, we only
-had to override the <methodname>general_work</methodname> method to
-accomplish our goal. <classname>gr_block</classname> provides a few other
-methods that are sometimes useful.</para>
-
-<sect2 id="forecast"><title>forecast</title>
-
-<para>Looking at <methodname>general_work</methodname> you may
-have wondered how the system knows how much data it needs to
-ensure is valid in each of the input arrays. The
-<methodname>forecast</methodname> method provides this
-information.</para>
-
-<para>The default implementation of <methodname>forecast</methodname>
-says there is a 1:1 relationship between noutput_items and the
-requirements for each input stream. The size of the items is defined by
-<classname>gr_io_signature</classname>s in the constructor of
-<classname>gr_block</classname>. The sizes of the input and output items
-can of course differ; this still qualifies as a 1:1 relationship.
-<programlisting>
- // default implementation: 1:1
-
- void
- gr_block::forecast (int noutput_items,
- gr_vector_int &amp;ninput_items_required)
- {
- unsigned ninputs = ninput_items_required.size ();
- for (unsigned i = 0; i &lt; ninputs; i++)
- ninput_items_required[i] = noutput_items;
- }
-</programlisting>
-</para>
-
-<para>Although the 1:1 implementation worked for howto_square_ff, it
-wouldn&apos;t be appropriate for interpolators, decimators, or blocks
-with a more complicated relationship between noutput_items and the
-input requirements. That said, by deriving your classes from
-<classname>gr_sync_block</classname>,
-<classname>gr_sync_interpolator</classname> or
-<classname>gr_sync_decimator</classname> instead of
-<classname>gr_block</classname>, you can often avoid
-implementing <methodname>forecast</methodname>.</para>
-
-</sect2>
-
-<sect2 id="set_output_multiple"><title>set_output_multiple</title>
-
-<para>When implementing your <methodname>general_work</methodname>
-routine, &its; occasionally convenient to have the run time system
-ensure that you are only asked to produce a number of output items
-that is a multiple of some particular value. This might occur if your
-algorithm naturally applies to a fixed sized block of data.
-Call <methodname>set_output_multiple</methodname> in your constructor
-to specify this requirement. The default output multiple is 1.</para>
-
-</sect2>
-
-</sect1>
-
-
-<sect1 id="common_patterns">
-<title>Subclasses for common patterns</title>
-
-<para><classname>gr_block</classname> allows tremendous flexibility
-with regard to the consumption of input streams and the production of
-output streams. Adroit use of <methodname>forecast</methodname> and
-<methodname>consume</methodname> allows variable rate blocks to be
-built. It is possible to construct blocks that consume data at
-different rates on each input, and produce output at a rate that
-is a function of the contents of the input data.</para>
-
-<para>On the other hand, it is very common for signal processing
-blocks to have a fixed relationship between the input rate and the
-output rate. Many are 1:1, while others have 1:N or N:1
-relationships.</para>
-
-<para>Another common requirement is the need to examine more than one
-input sample to produce a single output sample. This is orthogonal to
-the relationship between input and output rate. For example, a
-non-decimating, non-interpolating FIR filter needs to examine N input
-samples for each output sample it produces, where N is the number of
-taps in the filter. However, it only consumes a single input sample
-to produce a single output. We call this concept "history", but you
-could also think of it as "look-ahead".</para>
-
-<sect2 id="gr_sync_block"><title><classname>gr_sync_block</classname></title>
-
-<para>
-<ulink url="http://www.gnu.org/software/gnuradio/doc/classgr__sync__block.html">
-<classname>gr_sync_block</classname></ulink>
-is derived from
-<ulink url="http://www.gnu.org/software/gnuradio/doc/classgr__block.html">
-<classname>gr_block</classname></ulink>
-and implements a 1:1 block with
-optional history. Given that we know the input to output rate,
-certain simplifications are possible. From the implementor&apos;s
-point-of-view, the primary change is that we define a
-<methodname>work</methodname> method instead of
-<methodname>general_work</methodname>. <methodname>work</methodname>
-has a slightly different calling sequence;
-It omits the unnecessary ninput_items parameter, and arranges for
-<methodname>consume_each</methodname> to be called on our
-behalf.</para>
-<programlisting>
- /*!
- * \brief Just like gr_block::general_work, only this arranges to
- * call consume_each for you.
- *
- * The user must override work to define the signal processing code
- */
- virtual int work (int noutput_items,
- gr_vector_const_void_star &amp;input_items,
- gr_vector_void_star &amp;output_items) = 0;
-</programlisting>
-
-<para>This gives us fewer things to worry about, and less code to
-write. If the block requires history greater than 1, call
-<methodname>set_history</methodname> in the constructor, or any time
-the requirement changes.</para>
-
-<para><classname>gr_sync_block</classname> provides a
-version of <methodname>forecast</methodname> that handles the
-history requirement.</para>
-
-</sect2>
-
-<sect2 id="gr_sync_decimator"><title><classname>gr_sync_decimator</classname></title>
-
-<para>
-<ulink url="http://www.gnu.org/software/gnuradio/doc/classgr__sync__decimator.html">
-<classname>gr_sync_decimator</classname></ulink>
-is derived from
-<ulink url="http://www.gnu.org/software/gnuradio/doc/classgr__sync__block.html">
-<classname>gr_sync_block</classname></ulink>
-and implements a N:1 block with optional history.
-</para>
-
-</sect2>
-
-<sect2 id="gr_sync_interpolator"><title><classname>gr_sync_interpolator</classname></title>
-
-<para>
-<ulink url="http://www.gnu.org/software/gnuradio/doc/classgr__sync__interpolator.html">
-<classname>gr_sync_interpolator</classname></ulink>
-is derived from
-<ulink url="http://www.gnu.org/software/gnuradio/doc/classgr__sync__block.html">
-<classname>gr_sync_block</classname></ulink>
-and implements a 1:N block with optional history.
-</para>
-
-</sect2>
-
-
-</sect1>
-
-<sect1 id="square2">
-<title>Second Block: <classname>howto_square2_ff</classname></title>
-
-<para>Given that we now know about
-<classname>gr_sync_block</classname>, the way
-<classname>howto_square_ff</classname> should really be implemented is
-by subclassing <classname>gr_sync_block</classname>.</para>
-
-<para>Here are the revised sources: <xref
-linkend="howto_square2_ff.h"/>,
-<xref linkend="howto_square2_ff.cc"/>.
-The accompanying files contain the additional test code.
-</para>
-
-<example id="howto_square2_ff.h">
-<title><filename>howto_square2_ff.h</filename></title>
-&howto_square2_ff_h_listing;
-</example>
-
-<example id="howto_square2_ff.cc">
-<title><filename>howto_square2_ff.cc</filename></title>
-&howto_square2_ff_cc_listing;
-</example>
-
-</sect1>
-
-<sect1 id="where_to"><title>Where to from Here?</title>
-
-<para>At this point, we&apos;ve got a basic overview of how the system
-goes together. For more insight, I suggest that you look at the code
-of the system. The doxygen generated <ulink
-url="http://www.gnu.org/software/gnuradio/doc/hierarchy.html"> class
-hierarchy</ulink> is a useful way to find things that might interest
-you.</para>
-
-</sect1>
-
-
-<sect1 id="tips"><title>Miscellaneous Tips</title>
-
-<sect2 id="sources_and_sinks"><title>Sources and Sinks</title>
-
-<para>Sources and sinks are derived from
-<classname>gr_sync_block</classname>. The only thing different about
-them is that sources have no inputs and sinks have no outputs. This
-is reflected in the <classname>gr_io_signature</classname>s that are
-passed to the <classname>gr_sync_block</classname> constructor.
-Take a look at <filename>gr_file_source.{h,cc}</filename> and
-<filename>gr_file_sink.{h,cc}</filename> for some very straight-forward examples.
-</para>
-
-</sect2>
-
-<sect2 id="debugging">
-<title>Debugging with <application>gdb</application></title>
-
-<para>If your block isn&apos;t working, and you can&apos;t sort it
-out through python test cases or a few printfs in the code, you may want to
-use <application>gdb</application> to debug it. The trick of course
-is that all of &gnuradio;, including your new block, is dynamically
-loaded into python for execution.</para>
-
-<para>Try this: In your python test code, after the relevant imports,
-print out the process id and wait for a keystroke. In another
-window run gdb and tell it to attach to the python process with the
-given process id. At this point you can set breakpoints or whatever
-in your code. Go back to the python window and hit Enter so
-it&apos;ll continue.</para>
-
-<programlisting>
- #!/usr/bin/env python
- from gnuradio import gr
- from gnuradio import my_buggy_module
-
- # insert this in your test code...
- import os
- print 'Blocked waiting for GDB attach (pid = %d)' % (os.getpid(),)
- raw_input ('Press Enter to continue: ')
- # remainder of your test code follows...
-</programlisting>
-
-<para>Another SNAFU you might run into is that gdb 6.2 isn&apos;t
-able to set breakpoints in the constructors or destructors generated
-by g++ 3.4. In this case, insert a call to the nop function
-gri_debugger_hook in the constructor and recompile. Load the code as
-before and set a break point on gri_debugger_hook.</para>
-
-</sect2>
-
-<sect2 id="oprofile">
-<title>Performance Measurement with <application>oprofile</application></title>
-<para>Oprofile is your friend.
-See <ulink url="http://oprofile.sourceforge.net">http://oprofile.sourceforge.net</ulink>.
-</para>
-</sect2>
-
-</sect1><!-- end tips -->
-
-<sect1 id="futures"><title>Coming Attractions</title>
-<para></para>
-
-<sect2 id="types"><title>Improved Type System</title>
-<para></para>
-</sect2>
-
-<sect2 id="hierarchy"><title>Hierarchical Blocks</title>
-<para></para>
-</sect2>
-
-</sect1><!-- end Coming Attractions -->
-
-</article>