summaryrefslogtreecommitdiff
path: root/docs/exploring-gnuradio/fm_demod_example.xml
diff options
context:
space:
mode:
Diffstat (limited to 'docs/exploring-gnuradio/fm_demod_example.xml')
-rw-r--r--docs/exploring-gnuradio/fm_demod_example.xml123
1 files changed, 123 insertions, 0 deletions
diff --git a/docs/exploring-gnuradio/fm_demod_example.xml b/docs/exploring-gnuradio/fm_demod_example.xml
new file mode 100644
index 000000000..b417da0a8
--- /dev/null
+++ b/docs/exploring-gnuradio/fm_demod_example.xml
@@ -0,0 +1,123 @@
+<?xml version="1.0" encoding="ISO-8859-1"?>
+<example id="fm_demod_ex"><title>Broadcast FM Receiver</title>
+<programlisting>
+#!/usr/bin/env python
+
+from gnuradio import gr
+from gnuradio import audio
+from gnuradio import mc4020
+import sys
+
+def high_speed_adc (fg, input_rate):
+ # return gr.file_source (gr.sizeof_short, "dummy.dat", False)
+ return mc4020.source (input_rate, mc4020.MCC_CH3_EN | mc4020.MCC_ALL_1V)
+
+#
+# return a gr.flow_graph
+#
+def build_graph (freq1, freq2):
+ input_rate = 20e6
+ cfir_decimation = 125
+ audio_decimation = 5
+
+ quad_rate = input_rate / cfir_decimation
+ audio_rate = quad_rate / audio_decimation
+
+ fg = gr.flow_graph ()
+
+ # use high speed ADC as input source
+ src = high_speed_adc (fg, input_rate)
+
+ # compute FIR filter taps for channel selection
+ channel_coeffs = \
+ gr.firdes.low_pass (1.0, # gain
+ input_rate, # sampling rate
+ 250e3, # low pass cutoff freq
+ 8*100e3, # width of trans. band
+ gr.firdes.WIN_HAMMING)
+
+ # input: short; output: complex
+ chan_filter1 = \
+ gr.freq_xlating_fir_filter_scf (cfir_decimation,
+ channel_coeffs,
+ freq1, # 1st station freq
+ input_rate)
+
+ (head1, tail1) = build_pipeline (fg, quad_rate, audio_decimation)
+
+ # sound card as final sink
+ audio_sink = audio.sink (int (audio_rate))
+
+ # now wire it all together
+ fg.connect (src, chan_filter1)
+ fg.connect (chan_filter1, head1)
+ fg.connect (tail1, (audio_sink, 0))
+
+ return fg
+
+def build_pipeline (fg, quad_rate, audio_decimation):
+ '''Given a flow_graph, fg, construct a pipeline
+ for demodulating a broadcast FM signal. The
+ input is the downconverted complex baseband
+ signal. The output is the demodulated audio.
+
+ build_pipeline returns a two element tuple
+ containing the input and output endpoints.
+ '''
+ fm_demod_gain = 2200.0/32768.0
+ audio_rate = quad_rate / audio_decimation
+ volume = 1.0
+
+ # input: complex; output: float
+ fm_demod = gr.quadrature_demod_cf (volume*fm_demod_gain)
+
+ # compute FIR filter taps for audio filter
+ width_of_transition_band = audio_rate / 32
+ audio_coeffs = gr.firdes.low_pass (1.0, # gain
+ quad_rate, # sampling rate
+ audio_rate/2 - width_of_transition_band,
+ width_of_transition_band,
+ gr.firdes.WIN_HAMMING)
+
+ # input: float; output: float
+ audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)
+
+ fg.connect (fm_demod, audio_filter)
+ return ((fm_demod, 0), (audio_filter, 0))
+
+
+def main (args):
+ nargs = len (args)
+ if nargs == 1:
+ # get station frequency from command line
+ freq1 = float (args[0]) * 1e6
+ else:
+ sys.stderr.write ('usage: fm_demod freq\n')
+ sys.exit (1)
+
+ # connect to RF front end
+ rf_front_end = gr.microtune_4937_eval_board ()
+ if not rf_front_end.board_present_p ():
+ raise IOError, 'RF front end not found'
+
+ # set front end gain
+ rf_front_end.set_AGC (300)
+
+ # determine the front end's "Intermediate Frequency"
+ IF_freq = rf_front_end.get_output_freq () # 5.75e6
+
+ # Tell the front end to tune to freq1.
+ # I.e., freq1 is translated down to the IF frequency
+ rf_front_end.set_RF_freq (freq1)
+
+ # build the flow graph
+ fg = build_graph (IF_freq, None)
+
+ fg.start () # fork thread(s) and return
+ raw_input ('Press Enter to quit: ')
+ fg.stop ()
+
+if __name__ == '__main__':
+ main (sys.argv[1:])
+</programlisting>
+</example>