summaryrefslogtreecommitdiff
path: root/gr-trellis
diff options
context:
space:
mode:
authoranastas2006-09-11 21:55:23 +0000
committeranastas2006-09-11 21:55:23 +0000
commitd3ac84258f5da18469897c8eb41123d0015b2af7 (patch)
tree3aea7f725dfe78269ef6ec268226dd13a1ce6b4f /gr-trellis
parent23703f65f0d1cb5e1245a8448d59c1462659fc91 (diff)
downloadgnuradio-d3ac84258f5da18469897c8eb41123d0015b2af7.tar.gz
gnuradio-d3ac84258f5da18469897c8eb41123d0015b2af7.tar.bz2
gnuradio-d3ac84258f5da18469897c8eb41123d0015b2af7.zip
Updated documentation in gr-trellis/doc
git-svn-id: http://gnuradio.org/svn/gnuradio/trunk@3524 221aa14e-8319-0410-a670-987f0aec2ac5
Diffstat (limited to 'gr-trellis')
-rw-r--r--gr-trellis/doc/gr-trellis.xml237
-rwxr-xr-xgr-trellis/doc/test_viterbi_equalization1.py102
-rw-r--r--gr-trellis/doc/test_viterbi_equalization1.py.xml105
3 files changed, 436 insertions, 8 deletions
diff --git a/gr-trellis/doc/gr-trellis.xml b/gr-trellis/doc/gr-trellis.xml
index e33a94a2d..ed53715a8 100644
--- a/gr-trellis/doc/gr-trellis.xml
+++ b/gr-trellis/doc/gr-trellis.xml
@@ -2,6 +2,7 @@
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"docbookx.dtd" [
<!ENTITY test_tcm_listing SYSTEM "test_tcm.py.xml">
+ <!ENTITY test_viterbi_equalization1_listing SYSTEM "test_viterbi_equalization1.py.xml">
]>
<article>
@@ -18,6 +19,7 @@
</affiliation>
</author>
+<!--
<revhistory>
<revision>
<revnumber>v0.0</revnumber>
@@ -26,8 +28,8 @@
First cut.
</revremark>
</revision>
-
</revhistory>
+-->
<abstract><para>This document provides a description of the
Finite State Machine (FSM) implementation and the related
@@ -43,8 +45,6 @@ for GNU Radio.
<!--=====================================================-->
<sect1 id="intro"><title>Introduction</title>
-<para>....</para>
-
<para>
The basic goal of the implementation is to have a generic way of
describing an FSM that is decoupled from whether it describes a
@@ -342,14 +342,14 @@ In this section we give a brief description of the basic blocks implemented that
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<sect2 id="encoder"><title>Trellis Encoder</title>
<para>
-The trellis.encoder_XX(FSM, ST) block instantiates an FSM encoder corresponding to the fsm FSM and having initial state ST. The input and output is a sequence of bytes, shorts or integers.
+The <methodname>trellis.encoder_XX(FSM, ST)</methodname> block instantiates an FSM encoder corresponding to the fsm FSM and having initial state ST. The input and output is a sequence of bytes, shorts or integers.
</para>
</sect2>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<sect2 id="decoder"><title>Viterbi Decoder</title>
<para>
-The trellis.viterbi_X(FSM, K, S0, SK) block instantiates a Viterbi decoder
+The <methodname>trellis.viterbi_X(FSM, K, S0, SK)</methodname> block instantiates a Viterbi decoder
for a sequence of K trellis steps generated by the given FSM and with initial and final states set to S0 and SK, respectively (S0 and/or SK are set to -1
if the corresponding states are not fixed/known at the receiver side).
The output of this block is a sequence of K bytes, shorts or integers representing the estimated input (i.e., uncoded) sequence.
@@ -363,7 +363,7 @@ Observe that these inputs are generated externally and thus the Viterbi block is
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<sect2 id="metrics"><title>Metrics Calculator</title>
<para>
-The trellis.metrics_X(O,D,TABLE,TYPE) block is responsible for
+The <methodname>trellis.metrics_X(O,D,TABLE,TYPE)</methodname> block is responsible for
transforming the channel output to the stream of metrics appropriate as
inputs to the Viterbi block described above. For each D input bytes/shorts/integers/floats/complexes it produces O output floats
@@ -442,7 +442,7 @@ output of the metric block/input of the Viterbi block is FSM.O( ) floats for
each trellis step. Sometimes this results in buffer overflow even for
moderate sequence lengths.
To overcome this problem we provide a block that incorporates the metric calculation and Viterbi algorithm into a single GNU Radio block, namely
-trellis.viterbi_combined_X( FSM, K, S0, SK, D, TABLE, TYPE) where the arguments are exactly those used in the aforementioned two blocks.
+<methodname>trellis.viterbi_combined_X( FSM, K, S0, SK, D, TABLE, TYPE)</methodname> where the arguments are exactly those used in the aforementioned two blocks.
</para>
</sect2>
@@ -454,7 +454,7 @@ trellis.viterbi_combined_X( FSM, K, S0, SK, D, TABLE, TYPE) where the arguments
<!--=====================================================-->
-<sect1 id="tcm"><title>TCM: A Complete Example</title>
+<sect1 id="tcm"><title>A Complete Example: Trellis Coded Modulation (TCM)</title>
<para>
We now discuss through a concrete example how
@@ -652,11 +652,232 @@ The function returns the number of shorts and the number of shorts in error. Obs
48 return (ntotal,ntotal-nright)
</programlisting>
+</sect1>
+
+
+
+
+
+
+
+
+
+
+
+
+
+<!--=====================================================-->
+<sect1 id="isi"><title>Another Complete Example: Viterbi Equalization</title>
+
+<para>
+We now discuss through another concrete example how
+the above FSM model can be used in GNU Radio.
+
+The communication system that we want to simulate
+consists of a source generating the
+input information in packets, an ISI channel with
+additive white Gaussian noise (AWGN), and
+the VA performing MLSD.
+The program source is as follows.
+</para>
+
+&test_viterbi_equalization1_listing;
+
+<para>
+The program is called by
+<literallayout>
+./test_viterbi_equalization1.py Es/No_db repetitions
+</literallayout>
+where
+"Es/No_db" is the SNR in dB, and "repetitions"
+are the number of packets to be transmitted and received in order to
+collect sufficient number of errors for an accurate estimate of the
+error rate.
+</para>
+
+
+<para>
+Each packet has size Kb bits.
+The modulation is chosen to be 4-PAM in this example and the channel is chosen
+to be one of the test channels defined in fsm_utils.py
+</para>
+<programlisting>
+ 71 Kb=2048 # packet size in bits
+ 72 modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
+ 73 channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
+</programlisting>
+
+<para>
+The FSM is instantiated in
+</para>
+<programlisting>
+ 74 f=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
+</programlisting>
+<para>
+and generated automatically given the channel length and the modulation size.
+Since in this example the channel has length 5 and the modulation is 4-ary, the corresponding FSM has 4<superscript>5-1</superscript>=256 states and
+4<superscript>5</superscript>=1024 outputs (see the documentation on FSM for more explanation).
+</para>
+
+<para>
+Assuming that the FSM input has cardinality I, each input symbol consists
+of bitspersymbol=log<subscript>2</subscript>( I ) bits, and thus correspond to K = Kb/bitspersymbol symbols.
+</para>
+<programlisting>
+ 75 bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
+ 76 K=Kb/bitspersymbol # packet size in trellis steps
+</programlisting>
+
+
+
+<para>
+The overall system with input the 4-ary input symbols
+x<subscript>k</subscript>, modulated to the
+4-PAM symbols s<subscript>k</subscript> and passed through the ISI channel to produce the
+noise-free observations
+z<subscript>k</subscript> =
+sum<subscript>j=0</subscript><superscript>L-1</superscript> c<subscript>j</subscript> s<subscript>k-j</subscript> (where L is the channel length)
+can be modeled as a FSM followed by a memoryless modulation.
+In particular, the FSM input is the sequence
+x<subscript>k</subscript>
+and its output is the "combined" symbol
+y<subscript>k</subscript>=
+(x<subscript>k</subscript>,x<subscript>k-1</subscript>,...,x<subscript>k-L+1</subscript>) (actually its decimal representation).
+The memoryless modulator maps every "combined" symbol
+y<subscript>k</subscript> to
+z<subscript>k</subscript> =
+sum<subscript>j=0</subscript><superscript>L-1</superscript> c<subscript>j</subscript> s<subscript>k-j</subscript>
+Clearly this modulation is memoryless since
+each z<subscript>k</subscript> depends only on y<subscript>k</subscript>; the memory inherent in the ISI is hidden in the FSM structure.
+This memoryless modulator is automatically generated by a helper function in
+fsm_utils.py given the channel and modulation as in line 78, and has the
+familiar format tot_channel=(dimensionality,tot_constellation) as described in the TCM example.
+This is exactly what the metrics block (or the viterbi_combined block) require in order to evaluate the VA metrics from the noisy observations.
+</para>
+<programlisting>
+ 78 tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
+ 79 dimensionality = tot_channel[0]
+ 80 tot_constellation = tot_channel[1]
+ 81 N0=pow(10.0,-esn0_db/10.0); # noise variance
+ 82 if len(tot_constellation)/dimensionality != f.O():
+ 83 sys.stderr.write (&apos;Incompatible FSM output cardinality and lookup table size.\n&apos;)
+ 84 sys.exit (1)
+</programlisting>
+
+
+
+<para>
+Then, "run_test" is called with a different "seed" so that we get
+different data and noise realizations.
+</para>
+<programlisting>
+ 91 (s,e)=run_test(f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,-long(666+i)) # run experiment with different seed to get different data and noise realizations
+</programlisting>
+
+
+
+<para>
+Let us examine now the "run_test" function.
+First we set up the transmitter blocks.
+We generate a packet of K random symbols and add a head and a tail of L zeros,
+L being the channel length. This is sufficient to drive the initial and final states to 0.
+</para>
+<programlisting>
+ 14 L = len(channel)
+ 15
+ 16 # TX
+ 17 # this for loop is TOO slow in python!!!
+ 18 packet = [0]*(K+2*L)
+ 19 random.seed(seed)
+ 20 for i in range(len(packet)):
+ 21 packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
+ 22 for i in range(L): # first/last L symbols set to 0
+ 23 packet[i] = 0
+ 24 packet[len(packet)-i-1] = 0
+ 25 src = gr.vector_source_s(packet,False)
+ 26 mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0])
+</programlisting>
+
+
+<para>
+The modulated symbols are filtered by the ISI channel and AWGN with appropriate noise variance is added.
+</para>
+<programlisting>
+ 28 # CHANNEL
+ 29 isi = gr.fir_filter_fff(1,channel)
+ 30 add = gr.add_ff()
+ 31 noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
+</programlisting>
+
+
+
+<para>
+Since the output alphabet of the equivalent FSM is quite large (1024) we chose to utilize the combined metrics calculator and Viterbi algorithm block.
+also note that the first L observations are irrelevant and tus can be skipped.
+</para>
+<programlisting>
+ 33 # RX
+ 34 skip = gr.skiphead(gr.sizeof_float, L) # skip the first L samples since you know they are coming from the L zero symbols
+ 35 #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
+ 36 #va = trellis.viterbi_s(f,K+L,0,0) # Put -1 if the Initial/Final states are not set.
+ 37 va = trellis.viterbi_combined_s(f,K+L,0,0,dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
+ 38 dst = gr.vector_sink_s()
+</programlisting>
+
+<para>
+Now the VA can run once it is supplied by the initial and final states.
+In this example both the initial and final states are set to 0.
+The VA outputs the estimates of the input symbols which
+are then compared with the transmitted sequence.
+</para>
+<programlisting>
+ 49 data = dst.data()
+ 50 ntotal = len(data) - L
+ 51 nright=0
+ 52 for i in range(ntotal):
+ 53 if packet[i+L]==data[i]:
+ 54 nright=nright+1
+ 55 #else:
+ 56 #print &quot;Error in &quot;, i
+</programlisting>
+
+
+<para>
+The function returns the number of symbols and the number of symbols in error. Observe that this way the estimated error rate refers to
+2-bit-symbol error rate.
+</para>
+<programlisting>
+ 58 return (ntotal,ntotal-nright)
+</programlisting>
+
</sect1>
+
+
+
+
+<!--=====================================================-->
+<sect1 id="turbo"><title>Support for Concatenated Coding and Turbo Decoding</title>
+
+<para>
+To do...
+</para>
+
+
+
+
+</sect1>
+
+
+
+
+
+
+
+
<!--====================n================================-->
<sect1 id="future"><title>Future Work</title>
diff --git a/gr-trellis/doc/test_viterbi_equalization1.py b/gr-trellis/doc/test_viterbi_equalization1.py
new file mode 100755
index 000000000..57d617aa0
--- /dev/null
+++ b/gr-trellis/doc/test_viterbi_equalization1.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env python
+
+from gnuradio import gr
+from gnuradio import audio
+from gnuradio import trellis
+from gnuradio import eng_notation
+import math
+import sys
+import random
+import fsm_utils
+
+def run_test (f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,seed):
+ fg = gr.flow_graph ()
+ L = len(channel)
+
+ # TX
+ # this for loop is TOO slow in python!!!
+ packet = [0]*(K+2*L)
+ random.seed(seed)
+ for i in range(len(packet)):
+ packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
+ for i in range(L): # first/last L symbols set to 0
+ packet[i] = 0
+ packet[len(packet)-i-1] = 0
+ src = gr.vector_source_s(packet,False)
+ mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0])
+
+ # CHANNEL
+ isi = gr.fir_filter_fff(1,channel)
+ add = gr.add_ff()
+ noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
+
+ # RX
+ skip = gr.skiphead(gr.sizeof_float, L) # skip the first L samples since you know they are coming from the L zero symbols
+ #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
+ #va = trellis.viterbi_s(f,K+L,0,0) # Put -1 if the Initial/Final states are not set.
+ va = trellis.viterbi_combined_s(f,K+L,0,0,dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
+ dst = gr.vector_sink_s()
+
+ fg.connect (src,mod)
+ fg.connect (mod,isi,(add,0))
+ fg.connect (noise,(add,1))
+ #fg.connect (add,metrics)
+ #fg.connect (metrics,va,dst)
+ fg.connect (add,skip,va,dst)
+
+ fg.run()
+
+ data = dst.data()
+ ntotal = len(data) - L
+ nright=0
+ for i in range(ntotal):
+ if packet[i+L]==data[i]:
+ nright=nright+1
+ #else:
+ #print "Error in ", i
+
+ return (ntotal,ntotal-nright)
+
+
+def main(args):
+ nargs = len (args)
+ if nargs == 2:
+ esn0_db=float(args[0])
+ rep=int(args[1])
+ else:
+ sys.stderr.write ('usage: test_viterbi_equalization1.py Es/No_db repetitions\n')
+ sys.exit (1)
+
+ # system parameters
+ Kb=2048 # packet size in bits
+ modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
+ channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
+ f=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
+ bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
+ K=Kb/bitspersymbol # packet size in trellis steps
+
+ tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
+ dimensionality = tot_channel[0]
+ tot_constellation = tot_channel[1]
+ N0=pow(10.0,-esn0_db/10.0); # noise variance
+ if len(tot_constellation)/dimensionality != f.O():
+ sys.stderr.write ('Incompatible FSM output cardinality and lookup table size.\n')
+ sys.exit (1)
+
+ tot_s=0 # total number of transmitted shorts
+ terr_s=0 # total number of shorts in error
+ terr_p=0 # total number of packets in error
+
+ for i in range(rep):
+ (s,e)=run_test(f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,-long(666+i)) # run experiment with different seed to get different data and noise realizations
+ tot_s=tot_s+s
+ terr_s=terr_s+e
+ terr_p=terr_p+(terr_s!=0)
+ if ((i+1)%100==0) : # display progress
+ print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
+ # estimate of the (short or symbol) error rate
+ print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
+
+
+if __name__ == '__main__':
+ main (sys.argv[1:])
diff --git a/gr-trellis/doc/test_viterbi_equalization1.py.xml b/gr-trellis/doc/test_viterbi_equalization1.py.xml
new file mode 100644
index 000000000..cb13772fc
--- /dev/null
+++ b/gr-trellis/doc/test_viterbi_equalization1.py.xml
@@ -0,0 +1,105 @@
+<?xml version="1.0" encoding="ISO-8859-1"?>
+<programlisting>
+ 1 #!/usr/bin/env python
+ 2
+ 3 from gnuradio import gr
+ 4 from gnuradio import audio
+ 5 from gnuradio import trellis
+ 6 from gnuradio import eng_notation
+ 7 import math
+ 8 import sys
+ 9 import random
+ 10 import fsm_utils
+ 11
+ 12 def run_test (f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,seed):
+ 13 fg = gr.flow_graph ()
+ 14 L = len(channel)
+ 15
+ 16 # TX
+ 17 # this for loop is TOO slow in python!!!
+ 18 packet = [0]*(K+2*L)
+ 19 random.seed(seed)
+ 20 for i in range(len(packet)):
+ 21 packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
+ 22 for i in range(L): # first/last L symbols set to 0
+ 23 packet[i] = 0
+ 24 packet[len(packet)-i-1] = 0
+ 25 src = gr.vector_source_s(packet,False)
+ 26 mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0])
+ 27
+ 28 # CHANNEL
+ 29 isi = gr.fir_filter_fff(1,channel)
+ 30 add = gr.add_ff()
+ 31 noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
+ 32
+ 33 # RX
+ 34 skip = gr.skiphead(gr.sizeof_float, L) # skip the first L samples since you know they are coming from the L zero symbols
+ 35 #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
+ 36 #va = trellis.viterbi_s(f,K+L,-1,0) # Put -1 if the Initial/Final states are not set.
+ 37 va = trellis.viterbi_combined_s(f,K+L,0,0,dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
+ 38 dst = gr.vector_sink_s()
+ 39
+ 40 fg.connect (src,mod)
+ 41 fg.connect (mod,isi,(add,0))
+ 42 fg.connect (noise,(add,1))
+ 43 #fg.connect (add,metrics)
+ 44 #fg.connect (metrics,va,dst)
+ 45 fg.connect (add,skip,va,dst)
+ 46
+ 47 fg.run()
+ 48
+ 49 data = dst.data()
+ 50 ntotal = len(data) - L
+ 51 nright=0
+ 52 for i in range(ntotal):
+ 53 if packet[i+L]==data[i]:
+ 54 nright=nright+1
+ 55 #else:
+ 56 #print &quot;Error in &quot;, i
+ 57
+ 58 return (ntotal,ntotal-nright)
+ 59
+ 60
+ 61 def main(args):
+ 62 nargs = len (args)
+ 63 if nargs == 2:
+ 64 esn0_db=float(args[0])
+ 65 rep=int(args[1])
+ 66 else:
+ 67 sys.stderr.write (&apos;usage: test_viterbi_equalization1.py Es/No_db repetitions\n&apos;)
+ 68 sys.exit (1)
+ 69
+ 70 # system parameters
+ 71 Kb=2048 # packet size in bits
+ 72 modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
+ 73 channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
+ 74 f=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
+ 75 bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
+ 76 K=Kb/bitspersymbol # packet size in trellis steps
+ 77
+ 78 tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
+ 79 dimensionality = tot_channel[0]
+ 80 tot_constellation = tot_channel[1]
+ 81 N0=pow(10.0,-esn0_db/10.0); # noise variance
+ 82 if len(tot_constellation)/dimensionality != f.O():
+ 83 sys.stderr.write (&apos;Incompatible FSM output cardinality and lookup table size.\n&apos;)
+ 84 sys.exit (1)
+ 85
+ 86 tot_s=0 # total number of transmitted shorts
+ 87 terr_s=0 # total number of shorts in error
+ 88 terr_p=0 # total number of packets in error
+ 89
+ 90 for i in range(rep):
+ 91 (s,e)=run_test(f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,-long(666+i)) # run experiment with different seed to get different data and noise realizations
+ 92 tot_s=tot_s+s
+ 93 terr_s=terr_s+e
+ 94 terr_p=terr_p+(terr_s!=0)
+ 95 if ((i+1)%100==0) : # display progress
+ 96 print i+1,terr_p, &apos;%.2e&apos; % ((1.0*terr_p)/(i+1)),tot_s,terr_s, &apos;%.2e&apos; % ((1.0*terr_s)/tot_s)
+ 97 # estimate of the (short or symbol) error rate
+ 98 print rep,terr_p, &apos;%.2e&apos; % ((1.0*terr_p)/(i+1)),tot_s,terr_s, &apos;%.2e&apos; % ((1.0*terr_s)/tot_s)
+ 99
+100
+101 if __name__ == &apos;__main__&apos;:
+102 main (sys.argv[1:])
+</programlisting>