diff options
author | Achilleas Anastasopoulos | 2011-02-18 20:35:23 -0500 |
---|---|---|
committer | Achilleas Anastasopoulos | 2011-02-18 20:35:23 -0500 |
commit | ea76761275b68744f05550ddab612f551baad75a (patch) | |
tree | 961d7e546a48698c79417afedfeb0bc5a5a33cb9 /gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t | |
parent | 2ed9e3bc58dacd41dff201d8365f7bd04fc56462 (diff) | |
download | gnuradio-ea76761275b68744f05550ddab612f551baad75a.tar.gz gnuradio-ea76761275b68744f05550ddab612f551baad75a.tar.bz2 gnuradio-ea76761275b68744f05550ddab612f551baad75a.zip |
core algorithms such as viterbi/siso were refactored
and implemented using templates.
Minor renaming of some files
Diffstat (limited to 'gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t')
-rw-r--r-- | gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t | 466 |
1 files changed, 466 insertions, 0 deletions
diff --git a/gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t b/gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t new file mode 100644 index 000000000..c23445e61 --- /dev/null +++ b/gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t @@ -0,0 +1,466 @@ +/* -*- c++ -*- */ +/* + * Copyright 2004,2010 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +// @WARNING@ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <@NAME@.h> +#include <gr_io_signature.h> +#include <assert.h> +#include <iostream> + +static const float INF = 1.0e9; + +@SPTR_NAME@ +trellis_make_@BASE_NAME@ ( + const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, + int blocklength, + int repetitions, + trellis_siso_type_t SISO_TYPE, + int D, + const std::vector<@I_TYPE@> &TABLE, + trellis_metric_type_t METRIC_TYPE +) +{ + return gnuradio::get_initial_sptr (new @NAME@ ( + FSMo, STo0, SToK, + FSMi, STi0, STiK, + INTERLEAVER, + blocklength, + repetitions, + SISO_TYPE, + D, + TABLE,METRIC_TYPE + )); +} + +@NAME@::@NAME@ ( + const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, + int blocklength, + int repetitions, + trellis_siso_type_t SISO_TYPE, + int D, + const std::vector<@I_TYPE@> &TABLE, + trellis_metric_type_t METRIC_TYPE +) + : gr_block ("@BASE_NAME@", + gr_make_io_signature (1, 1, sizeof (@I_TYPE@)), + gr_make_io_signature (1, 1, sizeof (@O_TYPE@))), + d_FSMo (FSMo), d_STo0 (STo0), d_SToK (SToK), + d_FSMi (FSMo), d_STi0 (STi0), d_STiK (STiK), + d_INTERLEAVER (INTERLEAVER), + d_blocklength (blocklength), + d_repetitions (repetitions), + d_SISO_TYPE (SISO_TYPE), + d_D (D), + d_TABLE (TABLE), + d_METRIC_TYPE (METRIC_TYPE) +{ + set_relative_rate (1.0 / ((double) d_D)); + set_output_multiple (d_blocklength); +} + + +void +@NAME@::forecast (int noutput_items, gr_vector_int &ninput_items_required) +{ + assert (noutput_items % d_blocklength == 0); + int input_required = d_D * noutput_items ; + unsigned ninputs = ninput_items_required.size(); + for (unsigned int i = 0; i < ninputs; i++) { + ninput_items_required[i] = input_required; + } +} + +//======================================= + +inline float min(float a, float b) +{ + return a <= b ? a : b; +} + +inline float min_star(float a, float b) +{ + return (a <= b ? a : b)-log(1+exp(a <= b ? a-b : b-a)); +} + + +//======================================= + +void siso_outer_algorithm(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + const float *priori, const float *prioro, float *post, + @O_TYPE@ *data + ) +{ + float norm,mm,minm; + std::vector<float> alpha(S*(K+1)); + std::vector<float> beta(S*(K+1)); + + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + for(int k=0;k<K;k++) { // forward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]]; + minm=(*p2mymin)(minm,mm); + } + alpha[(k+1)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(SK<0) { // final state not specified + for(int i=0;i<S;i++) beta[K*S+i]=0; + } + else { + for(int i=0;i<S;i++) beta[K*S+i]=INF; + beta[K*S+SK]=0.0; + } + + for(int k=K-1;k>=0;k--) { // backward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(int i=0;i<I;i++) { + int i0 = j*I+i; + mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]]; + minm=(*p2mymin)(minm,mm); + } + beta[k*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + beta[k*S+j]-=norm; // normalize total metrics so they do not explode + } + +if (POSTI && POSTO) +{ + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*(I+O)+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*(I+O)+i]-=norm; // normalize metrics + } + + + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*(I+O)+I+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*(I+O)+I+n]-=norm; // normalize metrics + } +} +else if(POSTI) +{ + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*I+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*I+i]-=norm; // normalize metrics + } +} +else if(POSTO) +{ + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*O+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*O+n]-=norm; // normalize metrics + } +} +else + throw std::runtime_error ("Not both POSTI and POSTO can be false."); + +} + +//================================== + +void siso_inner_algorithm_combined(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + int D, + const std::vector<@I_TYPE@> &TABLE, + trellis_metric_type_t TYPE, + const float *priori, const @I_TYPE@ *observations, float *post + ) +{ + float norm,mm,minm; + std::vector<float> alpha(S*(K+1)); + std::vector<float> beta(S*(K+1)); + float *prioro = new float[O*K]; + + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + for(int k=0;k<K;k++) { // forward recursion + calc_metric(O, D, TABLE, &(observations[k*D]), &(prioro[k*O]),TYPE); // calc metrics + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]]; + minm=(*p2mymin)(minm,mm); + } + alpha[(k+1)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(SK<0) { // final state not specified + for(int i=0;i<S;i++) beta[K*S+i]=0; + } + else { + for(int i=0;i<S;i++) beta[K*S+i]=INF; + beta[K*S+SK]=0.0; + } + + for(int k=K-1;k>=0;k--) { // backward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(int i=0;i<I;i++) { + int i0 = j*I+i; + mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]]; + minm=(*p2mymin)(minm,mm); + } + beta[k*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + beta[k*S+j]-=norm; // normalize total metrics so they do not explode + } + + + if (POSTI && POSTO) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*(I+O)+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*(I+O)+i]-=norm; // normalize metrics + } + + + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*(I+O)+I+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*(I+O)+I+n]-=norm; // normalize metrics + } + } + else if(POSTI) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*I+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*I+i]-=norm; // normalize metrics + } + } + else if(POSTO) + { + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*O+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*O+n]-=norm; // normalize metrics + } + } + else + throw std::runtime_error ("Not both POSTI and POSTO can be false."); + + delete [] prioro; + +} + + +//========================================================== + + +void sccc_decoder_combined( + const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, int repetitions, + float (*p2mymin)(float,float), + int D, const std::vector<@I_TYPE@> &TABLE, + trellis_metric_type_t METRIC_TYPE, + const @I_TYPE@ *observations, @O_TYPE@ *data + ) +{ + + + + +} + + + + //d_FSMo.I(),d_FSMo.S(),d_FSMo.O(),d_FSMo.NS(),d_FSMo.OS(),d_FSMo.PS(),d_FSMo.PI(), +//=========================================================== + +int +@NAME@::general_work (int noutput_items, + gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, + gr_vector_void_star &output_items) +{ + assert (noutput_items % d_blocklength == 0); + int nblocks = noutput_items / d_blocklength; + + float (*p2min)(float, float) = NULL; + if(d_SISO_TYPE == TRELLIS_MIN_SUM) + p2min = &min; + else if(d_SISO_TYPE == TRELLIS_SUM_PRODUCT) + p2min = &min_star; + + + const @I_TYPE@ *in = (const @I_TYPE@ *) input_items[0]; + @O_TYPE@ *out = (@O_TYPE@ *) output_items[0]; + for (int n=0;n<nblocks;n++) { + sccc_decoder_combined( + d_FSMo, d_STo0, d_SToK, + d_FSMi, d_STi0, d_STiK, + d_INTERLEAVER, d_blocklength, d_repetitions, + p2min, + d_D,d_TABLE, + d_METRIC_TYPE, + &(in[n*d_blocklength*d_D]),&(out[n*d_blocklength]) + ); + } + + consume_each (d_D * noutput_items ); + return noutput_items; +} |