summaryrefslogtreecommitdiff
path: root/gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t
diff options
context:
space:
mode:
authorAchilleas Anastasopoulos2011-02-18 20:35:23 -0500
committerAchilleas Anastasopoulos2011-02-18 20:35:23 -0500
commitea76761275b68744f05550ddab612f551baad75a (patch)
tree961d7e546a48698c79417afedfeb0bc5a5a33cb9 /gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t
parent2ed9e3bc58dacd41dff201d8365f7bd04fc56462 (diff)
downloadgnuradio-ea76761275b68744f05550ddab612f551baad75a.tar.gz
gnuradio-ea76761275b68744f05550ddab612f551baad75a.tar.bz2
gnuradio-ea76761275b68744f05550ddab612f551baad75a.zip
core algorithms such as viterbi/siso were refactored
and implemented using templates. Minor renaming of some files
Diffstat (limited to 'gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t')
-rw-r--r--gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t466
1 files changed, 466 insertions, 0 deletions
diff --git a/gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t b/gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t
new file mode 100644
index 000000000..c23445e61
--- /dev/null
+++ b/gr-trellis/src/lib/trellis_sccc_decoder_combined_XX.cc.t
@@ -0,0 +1,466 @@
+/* -*- c++ -*- */
+/*
+ * Copyright 2004,2010 Free Software Foundation, Inc.
+ *
+ * This file is part of GNU Radio
+ *
+ * GNU Radio is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3, or (at your option)
+ * any later version.
+ *
+ * GNU Radio is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNU Radio; see the file COPYING. If not, write to
+ * the Free Software Foundation, Inc., 51 Franklin Street,
+ * Boston, MA 02110-1301, USA.
+ */
+
+// @WARNING@
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <@NAME@.h>
+#include <gr_io_signature.h>
+#include <assert.h>
+#include <iostream>
+
+static const float INF = 1.0e9;
+
+@SPTR_NAME@
+trellis_make_@BASE_NAME@ (
+ const fsm &FSMo, int STo0, int SToK,
+ const fsm &FSMi, int STi0, int STiK,
+ const interleaver &INTERLEAVER,
+ int blocklength,
+ int repetitions,
+ trellis_siso_type_t SISO_TYPE,
+ int D,
+ const std::vector<@I_TYPE@> &TABLE,
+ trellis_metric_type_t METRIC_TYPE
+)
+{
+ return gnuradio::get_initial_sptr (new @NAME@ (
+ FSMo, STo0, SToK,
+ FSMi, STi0, STiK,
+ INTERLEAVER,
+ blocklength,
+ repetitions,
+ SISO_TYPE,
+ D,
+ TABLE,METRIC_TYPE
+ ));
+}
+
+@NAME@::@NAME@ (
+ const fsm &FSMo, int STo0, int SToK,
+ const fsm &FSMi, int STi0, int STiK,
+ const interleaver &INTERLEAVER,
+ int blocklength,
+ int repetitions,
+ trellis_siso_type_t SISO_TYPE,
+ int D,
+ const std::vector<@I_TYPE@> &TABLE,
+ trellis_metric_type_t METRIC_TYPE
+)
+ : gr_block ("@BASE_NAME@",
+ gr_make_io_signature (1, 1, sizeof (@I_TYPE@)),
+ gr_make_io_signature (1, 1, sizeof (@O_TYPE@))),
+ d_FSMo (FSMo), d_STo0 (STo0), d_SToK (SToK),
+ d_FSMi (FSMo), d_STi0 (STi0), d_STiK (STiK),
+ d_INTERLEAVER (INTERLEAVER),
+ d_blocklength (blocklength),
+ d_repetitions (repetitions),
+ d_SISO_TYPE (SISO_TYPE),
+ d_D (D),
+ d_TABLE (TABLE),
+ d_METRIC_TYPE (METRIC_TYPE)
+{
+ set_relative_rate (1.0 / ((double) d_D));
+ set_output_multiple (d_blocklength);
+}
+
+
+void
+@NAME@::forecast (int noutput_items, gr_vector_int &ninput_items_required)
+{
+ assert (noutput_items % d_blocklength == 0);
+ int input_required = d_D * noutput_items ;
+ unsigned ninputs = ninput_items_required.size();
+ for (unsigned int i = 0; i < ninputs; i++) {
+ ninput_items_required[i] = input_required;
+ }
+}
+
+//=======================================
+
+inline float min(float a, float b)
+{
+ return a <= b ? a : b;
+}
+
+inline float min_star(float a, float b)
+{
+ return (a <= b ? a : b)-log(1+exp(a <= b ? a-b : b-a));
+}
+
+
+//=======================================
+
+void siso_outer_algorithm(int I, int S, int O,
+ const std::vector<int> &NS,
+ const std::vector<int> &OS,
+ const std::vector< std::vector<int> > &PS,
+ const std::vector< std::vector<int> > &PI,
+ int K,
+ int S0,int SK,
+ bool POSTI, bool POSTO,
+ float (*p2mymin)(float,float),
+ const float *priori, const float *prioro, float *post,
+ @O_TYPE@ *data
+ )
+{
+ float norm,mm,minm;
+ std::vector<float> alpha(S*(K+1));
+ std::vector<float> beta(S*(K+1));
+
+
+ if(S0<0) { // initial state not specified
+ for(int i=0;i<S;i++) alpha[0*S+i]=0;
+ }
+ else {
+ for(int i=0;i<S;i++) alpha[0*S+i]=INF;
+ alpha[0*S+S0]=0.0;
+ }
+
+ for(int k=0;k<K;k++) { // forward recursion
+ norm=INF;
+ for(int j=0;j<S;j++) {
+ minm=INF;
+ for(unsigned int i=0;i<PS[j].size();i++) {
+ //int i0 = j*I+i;
+ mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ alpha[(k+1)*S+j]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int j=0;j<S;j++)
+ alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode
+ }
+
+ if(SK<0) { // final state not specified
+ for(int i=0;i<S;i++) beta[K*S+i]=0;
+ }
+ else {
+ for(int i=0;i<S;i++) beta[K*S+i]=INF;
+ beta[K*S+SK]=0.0;
+ }
+
+ for(int k=K-1;k>=0;k--) { // backward recursion
+ norm=INF;
+ for(int j=0;j<S;j++) {
+ minm=INF;
+ for(int i=0;i<I;i++) {
+ int i0 = j*I+i;
+ mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ beta[k*S+j]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int j=0;j<S;j++)
+ beta[k*S+j]-=norm; // normalize total metrics so they do not explode
+ }
+
+if (POSTI && POSTO)
+{
+ for(int k=0;k<K;k++) { // input combining
+ norm=INF;
+ for(int i=0;i<I;i++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ post[k*(I+O)+i]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int i=0;i<I;i++)
+ post[k*(I+O)+i]-=norm; // normalize metrics
+ }
+
+
+ for(int k=0;k<K;k++) { // output combining
+ norm=INF;
+ for(int n=0;n<O;n++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ for(int i=0;i<I;i++) {
+ mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF);
+ minm=(*p2mymin)(minm,mm);
+ }
+ }
+ post[k*(I+O)+I+n]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int n=0;n<O;n++)
+ post[k*(I+O)+I+n]-=norm; // normalize metrics
+ }
+}
+else if(POSTI)
+{
+ for(int k=0;k<K;k++) { // input combining
+ norm=INF;
+ for(int i=0;i<I;i++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ post[k*I+i]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int i=0;i<I;i++)
+ post[k*I+i]-=norm; // normalize metrics
+ }
+}
+else if(POSTO)
+{
+ for(int k=0;k<K;k++) { // output combining
+ norm=INF;
+ for(int n=0;n<O;n++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ for(int i=0;i<I;i++) {
+ mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF);
+ minm=(*p2mymin)(minm,mm);
+ }
+ }
+ post[k*O+n]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int n=0;n<O;n++)
+ post[k*O+n]-=norm; // normalize metrics
+ }
+}
+else
+ throw std::runtime_error ("Not both POSTI and POSTO can be false.");
+
+}
+
+//==================================
+
+void siso_inner_algorithm_combined(int I, int S, int O,
+ const std::vector<int> &NS,
+ const std::vector<int> &OS,
+ const std::vector< std::vector<int> > &PS,
+ const std::vector< std::vector<int> > &PI,
+ int K,
+ int S0,int SK,
+ bool POSTI, bool POSTO,
+ float (*p2mymin)(float,float),
+ int D,
+ const std::vector<@I_TYPE@> &TABLE,
+ trellis_metric_type_t TYPE,
+ const float *priori, const @I_TYPE@ *observations, float *post
+ )
+{
+ float norm,mm,minm;
+ std::vector<float> alpha(S*(K+1));
+ std::vector<float> beta(S*(K+1));
+ float *prioro = new float[O*K];
+
+
+ if(S0<0) { // initial state not specified
+ for(int i=0;i<S;i++) alpha[0*S+i]=0;
+ }
+ else {
+ for(int i=0;i<S;i++) alpha[0*S+i]=INF;
+ alpha[0*S+S0]=0.0;
+ }
+
+ for(int k=0;k<K;k++) { // forward recursion
+ calc_metric(O, D, TABLE, &(observations[k*D]), &(prioro[k*O]),TYPE); // calc metrics
+ norm=INF;
+ for(int j=0;j<S;j++) {
+ minm=INF;
+ for(unsigned int i=0;i<PS[j].size();i++) {
+ //int i0 = j*I+i;
+ mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ alpha[(k+1)*S+j]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int j=0;j<S;j++)
+ alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode
+ }
+
+ if(SK<0) { // final state not specified
+ for(int i=0;i<S;i++) beta[K*S+i]=0;
+ }
+ else {
+ for(int i=0;i<S;i++) beta[K*S+i]=INF;
+ beta[K*S+SK]=0.0;
+ }
+
+ for(int k=K-1;k>=0;k--) { // backward recursion
+ norm=INF;
+ for(int j=0;j<S;j++) {
+ minm=INF;
+ for(int i=0;i<I;i++) {
+ int i0 = j*I+i;
+ mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ beta[k*S+j]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int j=0;j<S;j++)
+ beta[k*S+j]-=norm; // normalize total metrics so they do not explode
+ }
+
+
+ if (POSTI && POSTO)
+ {
+ for(int k=0;k<K;k++) { // input combining
+ norm=INF;
+ for(int i=0;i<I;i++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ post[k*(I+O)+i]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int i=0;i<I;i++)
+ post[k*(I+O)+i]-=norm; // normalize metrics
+ }
+
+
+ for(int k=0;k<K;k++) { // output combining
+ norm=INF;
+ for(int n=0;n<O;n++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ for(int i=0;i<I;i++) {
+ mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF);
+ minm=(*p2mymin)(minm,mm);
+ }
+ }
+ post[k*(I+O)+I+n]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int n=0;n<O;n++)
+ post[k*(I+O)+I+n]-=norm; // normalize metrics
+ }
+ }
+ else if(POSTI)
+ {
+ for(int k=0;k<K;k++) { // input combining
+ norm=INF;
+ for(int i=0;i<I;i++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]];
+ minm=(*p2mymin)(minm,mm);
+ }
+ post[k*I+i]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int i=0;i<I;i++)
+ post[k*I+i]-=norm; // normalize metrics
+ }
+ }
+ else if(POSTO)
+ {
+ for(int k=0;k<K;k++) { // output combining
+ norm=INF;
+ for(int n=0;n<O;n++) {
+ minm=INF;
+ for(int j=0;j<S;j++) {
+ for(int i=0;i<I;i++) {
+ mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF);
+ minm=(*p2mymin)(minm,mm);
+ }
+ }
+ post[k*O+n]=minm;
+ if(minm<norm) norm=minm;
+ }
+ for(int n=0;n<O;n++)
+ post[k*O+n]-=norm; // normalize metrics
+ }
+ }
+ else
+ throw std::runtime_error ("Not both POSTI and POSTO can be false.");
+
+ delete [] prioro;
+
+}
+
+
+//==========================================================
+
+
+void sccc_decoder_combined(
+ const fsm &FSMo, int STo0, int SToK,
+ const fsm &FSMi, int STi0, int STiK,
+ const interleaver &INTERLEAVER, int blocklength, int repetitions,
+ float (*p2mymin)(float,float),
+ int D, const std::vector<@I_TYPE@> &TABLE,
+ trellis_metric_type_t METRIC_TYPE,
+ const @I_TYPE@ *observations, @O_TYPE@ *data
+ )
+{
+
+
+
+
+}
+
+
+
+ //d_FSMo.I(),d_FSMo.S(),d_FSMo.O(),d_FSMo.NS(),d_FSMo.OS(),d_FSMo.PS(),d_FSMo.PI(),
+//===========================================================
+
+int
+@NAME@::general_work (int noutput_items,
+ gr_vector_int &ninput_items,
+ gr_vector_const_void_star &input_items,
+ gr_vector_void_star &output_items)
+{
+ assert (noutput_items % d_blocklength == 0);
+ int nblocks = noutput_items / d_blocklength;
+
+ float (*p2min)(float, float) = NULL;
+ if(d_SISO_TYPE == TRELLIS_MIN_SUM)
+ p2min = &min;
+ else if(d_SISO_TYPE == TRELLIS_SUM_PRODUCT)
+ p2min = &min_star;
+
+
+ const @I_TYPE@ *in = (const @I_TYPE@ *) input_items[0];
+ @O_TYPE@ *out = (@O_TYPE@ *) output_items[0];
+ for (int n=0;n<nblocks;n++) {
+ sccc_decoder_combined(
+ d_FSMo, d_STo0, d_SToK,
+ d_FSMi, d_STi0, d_STiK,
+ d_INTERLEAVER, d_blocklength, d_repetitions,
+ p2min,
+ d_D,d_TABLE,
+ d_METRIC_TYPE,
+ &(in[n*d_blocklength*d_D]),&(out[n*d_blocklength])
+ );
+ }
+
+ consume_each (d_D * noutput_items );
+ return noutput_items;
+}