diff options
author | Achilleas Anastasopoulos | 2011-02-18 20:35:23 -0500 |
---|---|---|
committer | Achilleas Anastasopoulos | 2011-02-18 20:35:23 -0500 |
commit | ea76761275b68744f05550ddab612f551baad75a (patch) | |
tree | 961d7e546a48698c79417afedfeb0bc5a5a33cb9 /gr-trellis/src/lib/core_algorithms.cc | |
parent | 2ed9e3bc58dacd41dff201d8365f7bd04fc56462 (diff) | |
download | gnuradio-ea76761275b68744f05550ddab612f551baad75a.tar.gz gnuradio-ea76761275b68744f05550ddab612f551baad75a.tar.bz2 gnuradio-ea76761275b68744f05550ddab612f551baad75a.zip |
core algorithms such as viterbi/siso were refactored
and implemented using templates.
Minor renaming of some files
Diffstat (limited to 'gr-trellis/src/lib/core_algorithms.cc')
-rw-r--r-- | gr-trellis/src/lib/core_algorithms.cc | 710 |
1 files changed, 710 insertions, 0 deletions
diff --git a/gr-trellis/src/lib/core_algorithms.cc b/gr-trellis/src/lib/core_algorithms.cc new file mode 100644 index 000000000..41ecaf174 --- /dev/null +++ b/gr-trellis/src/lib/core_algorithms.cc @@ -0,0 +1,710 @@ +/* -*- c++ -*- */ +/* + * Copyright 2004 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#include <float.h> +#include <stdexcept> +#include "core_algorithms.h" +#include "calc_metric.h" + +static const float INF = 1.0e9; + +template <class T> +void viterbi_algorithm(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, T *out)//, + //std::vector<int> &trace) +{ + std::vector<int> trace(S*K); + std::vector<float> alpha(S*2); + int alphai; + float norm,mm,minm; + int minmi; + int st; + + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + alphai=0; + for(int k=0;k<K;k++) { + norm=INF; + for(int j=0;j<S;j++) { // for each next state do ACS + minm=INF; + minmi=0; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + if((mm=alpha[alphai*S+PS[j][i]]+in[k*O+OS[PS[j][i]*I+PI[j][i]]])<minm) + minm=mm,minmi=i; + } + trace[k*S+j]=minmi; + alpha[((alphai+1)%2)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[((alphai+1)%2)*S+j]-=norm; // normalize total metrics so they do not explode + alphai=(alphai+1)%2; + } + + if(SK<0) { // final state not specified + minm=INF; + minmi=0; + for(int i=0;i<S;i++) + if((mm=alpha[alphai*S+i])<minm) minm=mm,minmi=i; + st=minmi; + } + else { + st=SK; + } + + for(int k=K-1;k>=0;k--) { // traceback + int i0=trace[k*S+st]; + out[k]= (T) PI[st][i0]; + st=PS[st][i0]; + } + +} + + +template +void viterbi_algorithm<unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, unsigned char *out); + + +template +void viterbi_algorithm<short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, short *out); + +template +void viterbi_algorithm<int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, int *out); + + + +//============================================== + +template <class Ti, class To> +void viterbi_algorithm_combined(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<Ti> &TABLE, + trellis_metric_type_t TYPE, + const Ti *in, To *out +) +{ + std::vector<int> trace(S*K); + std::vector<float> alpha(S*2); + float *metric = new float[O]; + int alphai; + float norm,mm,minm; + int minmi; + int st; + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + alphai=0; + for(int k=0;k<K;k++) { + calc_metric(O, D, TABLE, &(in[k*D]), metric,TYPE); // calc metrics + norm=INF; + for(int j=0;j<S;j++) { // for each next state do ACS + minm=INF; + minmi=0; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + if((mm=alpha[alphai*S+PS[j][i]]+metric[OS[PS[j][i]*I+PI[j][i]]])<minm) + minm=mm,minmi=i; + } + trace[k*S+j]=minmi; + alpha[((alphai+1)%2)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[((alphai+1)%2)*S+j]-=norm; // normalize total metrics so they do not explode + alphai=(alphai+1)%2; + } + + if(SK<0) { // final state not specified + minm=INF; + minmi=0; + for(int i=0;i<S;i++) + if((mm=alpha[alphai*S+i])<minm) minm=mm,minmi=i; + st=minmi; + } + else { + st=SK; + } + + for(int k=K-1;k>=0;k--) { // traceback + int i0=trace[k*S+st]; + out[k]= (To) PI[st][i0]; + st=PS[st][i0]; + } + + delete [] metric; + +} + +// Ti = s i f c +// To = b s i + +//--------------- + +template +void viterbi_algorithm_combined<short,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<short> &TABLE, + trellis_metric_type_t TYPE, + const short *in, unsigned char *out +); + +template +void viterbi_algorithm_combined<int,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<int> &TABLE, + trellis_metric_type_t TYPE, + const int *in, unsigned char *out +); + +template +void viterbi_algorithm_combined<float,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<float> &TABLE, + trellis_metric_type_t TYPE, + const float *in, unsigned char *out +); + +template +void viterbi_algorithm_combined<gr_complex,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<gr_complex> &TABLE, + trellis_metric_type_t TYPE, + const gr_complex *in, unsigned char *out +); + +//--------------- + +template +void viterbi_algorithm_combined<short,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<short> &TABLE, + trellis_metric_type_t TYPE, + const short *in, short *out +); + +template +void viterbi_algorithm_combined<int,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<int> &TABLE, + trellis_metric_type_t TYPE, + const int *in, short *out +); + +template +void viterbi_algorithm_combined<float,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<float> &TABLE, + trellis_metric_type_t TYPE, + const float *in, short *out +); + +template +void viterbi_algorithm_combined<gr_complex,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<gr_complex> &TABLE, + trellis_metric_type_t TYPE, + const gr_complex *in, short *out +); + +//-------------- + +template +void viterbi_algorithm_combined<short,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<short> &TABLE, + trellis_metric_type_t TYPE, + const short *in, int *out +); + +template +void viterbi_algorithm_combined<int,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<int> &TABLE, + trellis_metric_type_t TYPE, + const int *in, int *out +); + +template +void viterbi_algorithm_combined<float,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<float> &TABLE, + trellis_metric_type_t TYPE, + const float *in, int *out +); + +template +void viterbi_algorithm_combined<gr_complex,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<gr_complex> &TABLE, + trellis_metric_type_t TYPE, + const gr_complex *in, int *out +); + + + + + + + + + + + + + + + + + + + + +//=============================================== + +inline float min(float a, float b) +{ + return a <= b ? a : b; +} + +inline float min_star(float a, float b) +{ + return (a <= b ? a : b)-log(1+exp(a <= b ? a-b : b-a)); + //return 0; +} + +void siso_algorithm(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + const float *priori, const float *prioro, float *post//, + //std::vector<float> &alpha, + //std::vector<float> &beta + ) +{ + float norm,mm,minm; + std::vector<float> alpha(S*(K+1)); + std::vector<float> beta(S*(K+1)); + + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + for(int k=0;k<K;k++) { // forward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]]; + minm=(*p2mymin)(minm,mm); + } + alpha[(k+1)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(SK<0) { // final state not specified + for(int i=0;i<S;i++) beta[K*S+i]=0; + } + else { + for(int i=0;i<S;i++) beta[K*S+i]=INF; + beta[K*S+SK]=0.0; + } + + for(int k=K-1;k>=0;k--) { // backward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(int i=0;i<I;i++) { + int i0 = j*I+i; + mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]]; + minm=(*p2mymin)(minm,mm); + } + beta[k*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + beta[k*S+j]-=norm; // normalize total metrics so they do not explode + } + + +if (POSTI && POSTO) +{ + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*(I+O)+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*(I+O)+i]-=norm; // normalize metrics + } + + + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*(I+O)+I+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*(I+O)+I+n]-=norm; // normalize metrics + } +} +else if(POSTI) +{ + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*I+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*I+i]-=norm; // normalize metrics + } +} +else if(POSTO) +{ + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*O+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*O+n]-=norm; // normalize metrics + } +} +else + throw std::runtime_error ("Not both POSTI and POSTO can be false."); + +} + + +//=========================================================== + +void siso_algorithm_combined(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + int D, + const std::vector<float> &TABLE, + trellis_metric_type_t TYPE, + const float *priori, const float *observations, float *post//, + //std::vector<float> &alpha, + //std::vector<float> &beta + ) +{ + float norm,mm,minm; + std::vector<float> alpha(S*(K+1)); + std::vector<float> beta(S*(K+1)); + float *prioro = new float[O*K]; + + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + for(int k=0;k<K;k++) { // forward recursion + calc_metric(O, D, TABLE, &(observations[k*D]), &(prioro[k*O]),TYPE); // calc metrics + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]]; + minm=(*p2mymin)(minm,mm); + } + alpha[(k+1)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(SK<0) { // final state not specified + for(int i=0;i<S;i++) beta[K*S+i]=0; + } + else { + for(int i=0;i<S;i++) beta[K*S+i]=INF; + beta[K*S+SK]=0.0; + } + + for(int k=K-1;k>=0;k--) { // backward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(int i=0;i<I;i++) { + int i0 = j*I+i; + mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]]; + minm=(*p2mymin)(minm,mm); + } + beta[k*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + beta[k*S+j]-=norm; // normalize total metrics so they do not explode + } + + + if (POSTI && POSTO) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*(I+O)+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*(I+O)+i]-=norm; // normalize metrics + } + + + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*(I+O)+I+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*(I+O)+I+n]-=norm; // normalize metrics + } + } + else if(POSTI) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*I+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*I+i]-=norm; // normalize metrics + } + } + else if(POSTO) + { + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*O+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*O+n]-=norm; // normalize metrics + } + } + else + throw std::runtime_error ("Not both POSTI and POSTO can be false."); + + delete [] prioro; + +} + |