diff options
author | Johnathan Corgan | 2012-06-20 07:36:40 -0700 |
---|---|---|
committer | Johnathan Corgan | 2012-06-20 07:36:40 -0700 |
commit | 446494ea3bb021cb0b423c13bde2689c5046fe39 (patch) | |
tree | d07794c79e49b71c89266e2de74fee2308b41b21 /gr-filter/examples/fmtest.py | |
parent | d4843d2c9750bbf7b40e77b80936a08bcf39c1d1 (diff) | |
parent | 81bb55f3a7bb8f64c2bc75b02306700fb5b60a43 (diff) | |
download | gnuradio-446494ea3bb021cb0b423c13bde2689c5046fe39.tar.gz gnuradio-446494ea3bb021cb0b423c13bde2689c5046fe39.tar.bz2 gnuradio-446494ea3bb021cb0b423c13bde2689c5046fe39.zip |
Merge branch 'gr_filter'
Diffstat (limited to 'gr-filter/examples/fmtest.py')
-rwxr-xr-x | gr-filter/examples/fmtest.py | 226 |
1 files changed, 226 insertions, 0 deletions
diff --git a/gr-filter/examples/fmtest.py b/gr-filter/examples/fmtest.py new file mode 100755 index 000000000..9b02526d9 --- /dev/null +++ b/gr-filter/examples/fmtest.py @@ -0,0 +1,226 @@ +#!/usr/bin/env python +# +# Copyright 2009,2012 Free Software Foundation, Inc. +# +# This file is part of GNU Radio +# +# GNU Radio is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3, or (at your option) +# any later version. +# +# GNU Radio is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with GNU Radio; see the file COPYING. If not, write to +# the Free Software Foundation, Inc., 51 Franklin Street, +# Boston, MA 02110-1301, USA. +# + +from gnuradio import gr, blks2 +from gnuradio import filter +import sys, math, time + +try: + import scipy + from scipy import fftpack +except ImportError: + print "Error: Program requires scipy (see: www.scipy.org)." + sys.exit(1) + +try: + import pylab +except ImportError: + print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." + sys.exit(1) + + +class fmtx(gr.hier_block2): + def __init__(self, lo_freq, audio_rate, if_rate): + + gr.hier_block2.__init__(self, "build_fm", + gr.io_signature(1, 1, gr.sizeof_float), + gr.io_signature(1, 1, gr.sizeof_gr_complex)) + + fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6) + + # Local oscillator + lo = gr.sig_source_c (if_rate, # sample rate + gr.GR_SIN_WAVE, # waveform type + lo_freq, #frequency + 1.0, # amplitude + 0) # DC Offset + mixer = gr.multiply_cc () + + self.connect (self, fmtx, (mixer, 0)) + self.connect (lo, (mixer, 1)) + self.connect (mixer, self) + +class fmtest(gr.top_block): + def __init__(self): + gr.top_block.__init__(self) + + self._nsamples = 1000000 + self._audio_rate = 8000 + + # Set up N channels with their own baseband and IF frequencies + self._N = 5 + chspacing = 16000 + freq = [10, 20, 30, 40, 50] + f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing] + + self._if_rate = 4*self._N*self._audio_rate + + # Create a signal source and frequency modulate it + self.sum = gr.add_cc () + for n in xrange(self._N): + sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5) + fm = fmtx(f_lo[n], self._audio_rate, self._if_rate) + self.connect(sig, fm) + self.connect(fm, (self.sum, n)) + + self.head = gr.head(gr.sizeof_gr_complex, self._nsamples) + self.snk_tx = gr.vector_sink_c() + self.channel = blks2.channel_model(0.1) + + self.connect(self.sum, self.head, self.channel, self.snk_tx) + + + # Design the channlizer + self._M = 10 + bw = chspacing/2.0 + t_bw = chspacing/10.0 + self._chan_rate = self._if_rate / self._M + self._taps = filter.firdes.low_pass_2(1, self._if_rate, bw, t_bw, + attenuation_dB=100, + window=filter.firdes.WIN_BLACKMAN_hARRIS) + tpc = math.ceil(float(len(self._taps)) / float(self._M)) + + print "Number of taps: ", len(self._taps) + print "Number of channels: ", self._M + print "Taps per channel: ", tpc + + self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) + + self.connect(self.channel, self.pfb) + + # Create a file sink for each of M output channels of the filter and connect it + self.fmdet = list() + self.squelch = list() + self.snks = list() + for i in xrange(self._M): + self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate)) + self.squelch.append(blks2.standard_squelch(self._audio_rate*10)) + self.snks.append(gr.vector_sink_f()) + self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i]) + + def num_tx_channels(self): + return self._N + + def num_rx_channels(self): + return self._M + +def main(): + + fm = fmtest() + + tstart = time.time() + fm.run() + tend = time.time() + + if 1: + fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") + fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") + fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") + + Ns = 10000 + Ne = 100000 + + fftlen = 8192 + winfunc = scipy.blackman + + # Plot transmitted signal + fs = fm._if_rate + + d = fm.snk_tx.data()[Ns:Ns+Ne] + sp1_f = fig1.add_subplot(2, 1, 1) + + X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, + window = lambda d: d*winfunc(fftlen), + visible=False) + X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) + f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) + p1_f = sp1_f.plot(f_in, X_in, "b") + sp1_f.set_xlim([min(f_in), max(f_in)+1]) + sp1_f.set_ylim([-120.0, 20.0]) + + sp1_f.set_title("Input Signal", weight="bold") + sp1_f.set_xlabel("Frequency (Hz)") + sp1_f.set_ylabel("Power (dBW)") + + Ts = 1.0/fs + Tmax = len(d)*Ts + + t_in = scipy.arange(0, Tmax, Ts) + x_in = scipy.array(d) + sp1_t = fig1.add_subplot(2, 1, 2) + p1_t = sp1_t.plot(t_in, x_in.real, "b-o") + #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") + sp1_t.set_ylim([-5, 5]) + + # Set up the number of rows and columns for plotting the subfigures + Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels()))) + Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols)) + if(fm.num_rx_channels() % Ncols != 0): + Nrows += 1 + + # Plot each of the channels outputs. Frequencies on Figure 2 and + # time signals on Figure 3 + fs_o = fm._audio_rate + for i in xrange(len(fm.snks)): + # remove issues with the transients at the beginning + # also remove some corruption at the end of the stream + # this is a bug, probably due to the corner cases + d = fm.snks[i].data()[Ns:Ne] + + sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i) + X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, + window = lambda d: d*winfunc(fftlen), + visible=False) + #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) + X_o = 10.0*scipy.log10(abs(X)) + #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) + f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size)) + p2_f = sp2_f.plot(f_o, X_o, "b") + sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) + sp2_f.set_ylim([-120.0, 20.0]) + sp2_f.grid(True) + + sp2_f.set_title(("Channel %d" % i), weight="bold") + sp2_f.set_xlabel("Frequency (kHz)") + sp2_f.set_ylabel("Power (dBW)") + + + Ts = 1.0/fs_o + Tmax = len(d)*Ts + t_o = scipy.arange(0, Tmax, Ts) + + x_t = scipy.array(d) + sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i) + p2_t = sp2_t.plot(t_o, x_t.real, "b") + p2_t = sp2_t.plot(t_o, x_t.imag, "r") + sp2_t.set_xlim([min(t_o), max(t_o)+1]) + sp2_t.set_ylim([-1, 1]) + + sp2_t.set_xlabel("Time (s)") + sp2_t.set_ylabel("Amplitude") + + + pylab.show() + + +if __name__ == "__main__": + main() |