diff options
author | Martin Braun | 2012-07-15 14:54:01 -0400 |
---|---|---|
committer | Tom Rondeau | 2012-07-15 14:54:01 -0400 |
commit | 1979696fc7893a549a62488104d974735e299a21 (patch) | |
tree | 824b892ca6f77db17acb8c0be14c2e2f6282079d /gr-digital | |
parent | 85a32174858443d0b3e30c2626f83af9e851d9f1 (diff) | |
download | gnuradio-1979696fc7893a549a62488104d974735e299a21.tar.gz gnuradio-1979696fc7893a549a62488104d974735e299a21.tar.bz2 gnuradio-1979696fc7893a549a62488104d974735e299a21.zip |
digital: adding BER/SNR simulation example.
Diffstat (limited to 'gr-digital')
-rwxr-xr-x | gr-digital/examples/berawgn.py | 104 |
1 files changed, 104 insertions, 0 deletions
diff --git a/gr-digital/examples/berawgn.py b/gr-digital/examples/berawgn.py new file mode 100755 index 000000000..d58dfbaae --- /dev/null +++ b/gr-digital/examples/berawgn.py @@ -0,0 +1,104 @@ +#!/usr/bin/env python +""" +BER simulation for QPSK signals, compare to theoretical values. +Change the N_BITS value to simulate more bits per Eb/N0 value, +thus allowing to check for lower BER values. + +Lower values will work faster, higher values will use a lot of RAM. +Also, this app isn't highly optimized--the flow graph is completely +reinstantiated for every Eb/N0 value. +Of course, expect the maximum value for BER to be one order of +magnitude below what you chose for N_BITS. +""" + + +import math +import numpy +from scipy.special import erfc +import pylab +from gnuradio import gr, digital + +# Best to choose powers of 10 +N_BITS = 1e7 +RAND_SEED = 42 + +def berawgn(EbN0): + """ Calculates theoretical bit error rate in AWGN (for BPSK and given Eb/N0) """ + return 0.5 * erfc(math.sqrt(10**(float(EbN0)/10))) + +class BitErrors(gr.hier_block2): + """ Two inputs: true and received bits. We compare them and + add up the number of incorrect bits. Because integrate_ff() + can only add up a certain number of values, the output is + not a scalar, but a sequence of values, the sum of which is + the BER. """ + def __init__(self, bits_per_byte): + gr.hier_block2.__init__(self, "BitErrors", + gr.io_signature(2, 2, gr.sizeof_char), + gr.io_signature(1, 1, gr.sizeof_int)) + + # Bit comparison + comp = gr.xor_bb() + intdump_decim = 100000 + if N_BITS < intdump_decim: + intdump_decim = int(N_BITS) + self.connect(self, + comp, + gr.unpack_k_bits_bb(bits_per_byte), + gr.uchar_to_float(), + gr.integrate_ff(intdump_decim), + gr.multiply_const_ff(1.0/N_BITS), + self) + self.connect((self, 1), (comp, 1)) + +class BERAWGNSimu(gr.top_block): + " This contains the simulation flow graph " + def __init__(self, EbN0): + gr.top_block.__init__(self) + self.const = digital.qpsk_constellation() + # Source is N_BITS bits, non-repeated + data = map(int, numpy.random.randint(0, self.const.arity(), N_BITS/self.const.bits_per_symbol())) + src = gr.vector_source_b(data, False) + mod = gr.chunks_to_symbols_bc((self.const.points()), 1) + add = gr.add_vcc() + noise = gr.noise_source_c(gr.GR_GAUSSIAN, + self.EbN0_to_noise_voltage(EbN0), + RAND_SEED) + demod = digital.constellation_decoder_cb(self.const.base()) + ber = BitErrors(self.const.bits_per_symbol()) + self.sink = gr.vector_sink_f() + self.connect(src, mod, add, demod, ber, self.sink) + self.connect(noise, (add, 1)) + self.connect(src, (ber, 1)) + + def EbN0_to_noise_voltage(self, EbN0): + """ Converts Eb/N0 to a single-sided noise voltage (assuming unit symbol power) """ + return 1.0 / math.sqrt(2.0 * self.const.bits_per_symbol() * 10**(float(EbN0)/10)) + + +def simulate_ber(EbN0): + """ All the work's done here: create flow graph, run, read out BER """ + print "Eb/N0 = %d dB" % EbN0 + fg = BERAWGNSimu(EbN0) + fg.run() + return numpy.sum(fg.sink.data()) + +if __name__ == "__main__": + EbN0_min = 0 + EbN0_max = 15 + EbN0_range = range(EbN0_min, EbN0_max+1) + ber_theory = [berawgn(x) for x in EbN0_range] + print "Simulating..." + ber_simu = [simulate_ber(x) for x in EbN0_range] + + f = pylab.figure() + s = f.add_subplot(1,1,1) + s.semilogy(EbN0_range, ber_theory, 'g-.', label="Theoretical") + s.semilogy(EbN0_range, ber_simu, 'b-o', label="Simulated") + s.set_title('BER Simulation') + s.set_xlabel('Eb/N0 (dB)') + s.set_ylabel('BER') + s.legend() + s.grid() + pylab.show() + |