diff options
author | Tom Rondeau | 2011-03-28 22:21:49 -0400 |
---|---|---|
committer | Tom Rondeau | 2011-03-28 22:22:43 -0400 |
commit | a6c20fcd651e111dbb835b7d2becc822cd8ec552 (patch) | |
tree | c3a8e13c7bfbddcda2c3535fe7c3e8d5534e2e42 /gr-digital/python/qa_costas_loop_cc.py | |
parent | f6e8da2d7cb16c68a3e3683a0e81c84eda73dabf (diff) | |
download | gnuradio-a6c20fcd651e111dbb835b7d2becc822cd8ec552.tar.gz gnuradio-a6c20fcd651e111dbb835b7d2becc822cd8ec552.tar.bz2 gnuradio-a6c20fcd651e111dbb835b7d2becc822cd8ec552.zip |
gr-digital: adding QA code for Costas loop block.
Diffstat (limited to 'gr-digital/python/qa_costas_loop_cc.py')
-rw-r--r-- | gr-digital/python/qa_costas_loop_cc.py | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/gr-digital/python/qa_costas_loop_cc.py b/gr-digital/python/qa_costas_loop_cc.py new file mode 100644 index 000000000..464534723 --- /dev/null +++ b/gr-digital/python/qa_costas_loop_cc.py @@ -0,0 +1,169 @@ +#!/usr/bin/env python +# +# Copyright 2011 Free Software Foundation, Inc. +# +# This file is part of GNU Radio +# +# GNU Radio is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3, or (at your option) +# any later version. +# +# GNU Radio is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with GNU Radio; see the file COPYING. If not, write to +# the Free Software Foundation, Inc., 51 Franklin Street, +# Boston, MA 02110-1301, USA. +# + +from gnuradio import gr, blks2, gr_unittest +import digital_swig +import random, cmath + +class test_digital(gr_unittest.TestCase): + + def setUp (self): + self.tb = gr.top_block () + + def tearDown (self): + self.tb = None + + def test01 (self): + # test basic functionality by setting all gains to 0 + alpha = beta = max_freq = min_freq = 0.0 + order = 2 + self.test = digital_swig.costas_loop_cc(alpha, beta, + max_freq, min_freq, + order) + data = 100*[complex(1,0),] + self.src = gr.vector_source_c(data, False) + self.snk = gr.vector_sink_c() + + self.tb.connect(self.src, self.test, self.snk) + self.tb.run() + + expected_result = data + dst_data = self.snk.data() + self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5) + + def test02 (self): + # Make sure it doesn't diverge given perfect data + alpha = 0.1 + beta = 0.25*alpha*alpha + max_freq = 0.25 + min_freq = -0.25 + order = 2 + self.test = digital_swig.costas_loop_cc(alpha, beta, + max_freq, min_freq, + order) + data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)] + self.src = gr.vector_source_c(data, False) + self.snk = gr.vector_sink_c() + + self.tb.connect(self.src, self.test, self.snk) + self.tb.run() + + expected_result = data + dst_data = self.snk.data() + + self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5) + + def test03 (self): + # BPSK Convergence test with static rotation + alpha = 0.25 + beta = 0.25*alpha*alpha + max_freq = 0.25 + min_freq = -0.25 + order = 2 + self.test = digital_swig.costas_loop_cc(alpha, beta, + max_freq, min_freq, + order) + rot = cmath.exp(0.2j) # some small rotation + data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)] + + N = 40 # settling time + expected_result = data[N:] + data = [rot*d for d in data] + + self.src = gr.vector_source_c(data, False) + self.snk = gr.vector_sink_c() + + self.tb.connect(self.src, self.test, self.snk) + self.tb.run() + + dst_data = self.snk.data()[N:] + + # generously compare results; the loop will converge near to, but + # not exactly on, the target data + self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2) + + def test04 (self): + # QPSK Convergence test with static rotation + alpha = 0.25 + beta = 0.25*alpha*alpha + max_freq = 0.25 + min_freq = -0.25 + order = 4 + self.test = digital_swig.costas_loop_cc(alpha, beta, + max_freq, min_freq, + order) + rot = cmath.exp(0.2j) # some small rotation + data = [complex(2*random.randint(0,1)-1, 2*random.randint(0,1)-1) + for i in xrange(100)] + + N = 40 # settling time + expected_result = data[N:] + data = [rot*d for d in data] + + self.src = gr.vector_source_c(data, False) + self.snk = gr.vector_sink_c() + + self.tb.connect(self.src, self.test, self.snk) + self.tb.run() + + dst_data = self.snk.data()[N:] + + # generously compare results; the loop will converge near to, but + # not exactly on, the target data + self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2) + + def test05 (self): + # 8PSK Convergence test with static rotation + alpha = 0.25 + beta = 0.25*alpha*alpha + max_freq = 0.25 + min_freq = -0.25 + order = 8 + self.test = digital_swig.costas_loop_cc(alpha, beta, + max_freq, min_freq, + order) + rot = cmath.exp(cmath.pi/16.0j) # some small rotation + const = blks2.psk.make_constellation(order) + data = [random.randint(0,7) for i in xrange(100)] + data = [rot*const[d] for d in data] + + N = 40 # settling time + expected_result = data[N:] + data = [rot*d for d in data] + + self.src = gr.vector_source_c(data, False) + self.snk = gr.vector_sink_c() + + self.tb.connect(self.src, self.test, self.snk) + self.tb.run() + + dst_data = self.snk.data()[N:] + + print expected_result + print dst_data + + # generously compare results; the loop will converge near to, but + # not exactly on, the target data + self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2) + +if __name__ == '__main__': + gr_unittest.run(test_digital, "test_digital.xml") |