summaryrefslogtreecommitdiff
path: root/gr-digital/python/qa_costas_loop_cc.py
diff options
context:
space:
mode:
authorTom Rondeau2011-03-28 22:21:49 -0400
committerTom Rondeau2011-03-28 22:22:43 -0400
commita6c20fcd651e111dbb835b7d2becc822cd8ec552 (patch)
treec3a8e13c7bfbddcda2c3535fe7c3e8d5534e2e42 /gr-digital/python/qa_costas_loop_cc.py
parentf6e8da2d7cb16c68a3e3683a0e81c84eda73dabf (diff)
downloadgnuradio-a6c20fcd651e111dbb835b7d2becc822cd8ec552.tar.gz
gnuradio-a6c20fcd651e111dbb835b7d2becc822cd8ec552.tar.bz2
gnuradio-a6c20fcd651e111dbb835b7d2becc822cd8ec552.zip
gr-digital: adding QA code for Costas loop block.
Diffstat (limited to 'gr-digital/python/qa_costas_loop_cc.py')
-rw-r--r--gr-digital/python/qa_costas_loop_cc.py169
1 files changed, 169 insertions, 0 deletions
diff --git a/gr-digital/python/qa_costas_loop_cc.py b/gr-digital/python/qa_costas_loop_cc.py
new file mode 100644
index 000000000..464534723
--- /dev/null
+++ b/gr-digital/python/qa_costas_loop_cc.py
@@ -0,0 +1,169 @@
+#!/usr/bin/env python
+#
+# Copyright 2011 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, blks2, gr_unittest
+import digital_swig
+import random, cmath
+
+class test_digital(gr_unittest.TestCase):
+
+ def setUp (self):
+ self.tb = gr.top_block ()
+
+ def tearDown (self):
+ self.tb = None
+
+ def test01 (self):
+ # test basic functionality by setting all gains to 0
+ alpha = beta = max_freq = min_freq = 0.0
+ order = 2
+ self.test = digital_swig.costas_loop_cc(alpha, beta,
+ max_freq, min_freq,
+ order)
+ data = 100*[complex(1,0),]
+ self.src = gr.vector_source_c(data, False)
+ self.snk = gr.vector_sink_c()
+
+ self.tb.connect(self.src, self.test, self.snk)
+ self.tb.run()
+
+ expected_result = data
+ dst_data = self.snk.data()
+ self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5)
+
+ def test02 (self):
+ # Make sure it doesn't diverge given perfect data
+ alpha = 0.1
+ beta = 0.25*alpha*alpha
+ max_freq = 0.25
+ min_freq = -0.25
+ order = 2
+ self.test = digital_swig.costas_loop_cc(alpha, beta,
+ max_freq, min_freq,
+ order)
+ data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)]
+ self.src = gr.vector_source_c(data, False)
+ self.snk = gr.vector_sink_c()
+
+ self.tb.connect(self.src, self.test, self.snk)
+ self.tb.run()
+
+ expected_result = data
+ dst_data = self.snk.data()
+
+ self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5)
+
+ def test03 (self):
+ # BPSK Convergence test with static rotation
+ alpha = 0.25
+ beta = 0.25*alpha*alpha
+ max_freq = 0.25
+ min_freq = -0.25
+ order = 2
+ self.test = digital_swig.costas_loop_cc(alpha, beta,
+ max_freq, min_freq,
+ order)
+ rot = cmath.exp(0.2j) # some small rotation
+ data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)]
+
+ N = 40 # settling time
+ expected_result = data[N:]
+ data = [rot*d for d in data]
+
+ self.src = gr.vector_source_c(data, False)
+ self.snk = gr.vector_sink_c()
+
+ self.tb.connect(self.src, self.test, self.snk)
+ self.tb.run()
+
+ dst_data = self.snk.data()[N:]
+
+ # generously compare results; the loop will converge near to, but
+ # not exactly on, the target data
+ self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)
+
+ def test04 (self):
+ # QPSK Convergence test with static rotation
+ alpha = 0.25
+ beta = 0.25*alpha*alpha
+ max_freq = 0.25
+ min_freq = -0.25
+ order = 4
+ self.test = digital_swig.costas_loop_cc(alpha, beta,
+ max_freq, min_freq,
+ order)
+ rot = cmath.exp(0.2j) # some small rotation
+ data = [complex(2*random.randint(0,1)-1, 2*random.randint(0,1)-1)
+ for i in xrange(100)]
+
+ N = 40 # settling time
+ expected_result = data[N:]
+ data = [rot*d for d in data]
+
+ self.src = gr.vector_source_c(data, False)
+ self.snk = gr.vector_sink_c()
+
+ self.tb.connect(self.src, self.test, self.snk)
+ self.tb.run()
+
+ dst_data = self.snk.data()[N:]
+
+ # generously compare results; the loop will converge near to, but
+ # not exactly on, the target data
+ self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)
+
+ def test05 (self):
+ # 8PSK Convergence test with static rotation
+ alpha = 0.25
+ beta = 0.25*alpha*alpha
+ max_freq = 0.25
+ min_freq = -0.25
+ order = 8
+ self.test = digital_swig.costas_loop_cc(alpha, beta,
+ max_freq, min_freq,
+ order)
+ rot = cmath.exp(cmath.pi/16.0j) # some small rotation
+ const = blks2.psk.make_constellation(order)
+ data = [random.randint(0,7) for i in xrange(100)]
+ data = [rot*const[d] for d in data]
+
+ N = 40 # settling time
+ expected_result = data[N:]
+ data = [rot*d for d in data]
+
+ self.src = gr.vector_source_c(data, False)
+ self.snk = gr.vector_sink_c()
+
+ self.tb.connect(self.src, self.test, self.snk)
+ self.tb.run()
+
+ dst_data = self.snk.data()[N:]
+
+ print expected_result
+ print dst_data
+
+ # generously compare results; the loop will converge near to, but
+ # not exactly on, the target data
+ self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)
+
+if __name__ == '__main__':
+ gr_unittest.run(test_digital, "test_digital.xml")