diff options
author | Tom Rondeau | 2011-12-29 18:30:27 -0500 |
---|---|---|
committer | Tom Rondeau | 2011-12-29 18:30:27 -0500 |
commit | 36dda1f11620c6c9db63036d76a67b3be3f711bc (patch) | |
tree | 81eba2a0287406cb7cc14838009652c5c40e23e9 /gr-digital/include/digital_impl_mpsk_snr_est.h | |
parent | 062f4f37c8dd543cbd29ab4a4745534497c920a8 (diff) | |
download | gnuradio-36dda1f11620c6c9db63036d76a67b3be3f711bc.tar.gz gnuradio-36dda1f11620c6c9db63036d76a67b3be3f711bc.tar.bz2 gnuradio-36dda1f11620c6c9db63036d76a67b3be3f711bc.zip |
digital: added documentation for SNR estimators; made a Doxygen group for them. Also set the alpha value to a default of 0.001; most won't need to change this.
Diffstat (limited to 'gr-digital/include/digital_impl_mpsk_snr_est.h')
-rw-r--r-- | gr-digital/include/digital_impl_mpsk_snr_est.h | 194 |
1 files changed, 134 insertions, 60 deletions
diff --git a/gr-digital/include/digital_impl_mpsk_snr_est.h b/gr-digital/include/digital_impl_mpsk_snr_est.h index e530782bc..5a85d100b 100644 --- a/gr-digital/include/digital_impl_mpsk_snr_est.h +++ b/gr-digital/include/digital_impl_mpsk_snr_est.h @@ -25,6 +25,19 @@ #include <digital_api.h> #include <gr_sync_block.h> +//! Enum for the type of SNR estimator to select +/*! \ingroup snr_blk + * \anchor ref_snr_est_types + * + * Below are some ROUGH estimates of what values of SNR each of these + * types of estimators is good for. In general, these offer a + * trade-off between accuracy and performance. + * + * \li SNR_EST_SIMPLE: Simple estimator (>= 7 dB) + * \li SNR_EST_SKEW: Skewness-base est (>= 5 dB) + * \li SNR_EST_M2M4: 2nd & 4th moment est (>= 1 dB) + * \li SNR_EST_SVR: SVR-based est (>= 0dB) +*/ enum snr_est_type_t { SNR_EST_SIMPLE = 0, // Simple estimator (>= 7 dB) SNR_EST_SKEW, // Skewness-base est (>= 5 dB) @@ -32,8 +45,9 @@ enum snr_est_type_t { SNR_EST_SVR // SVR-based est (>= 0dB) }; -/*! - * Parent class for SNR Estimators +/*! \brief A parent class for SNR estimators, specifically for M-PSK + * signals in AWGN channels. + * \ingroup snr_blk */ class DIGITAL_API digital_impl_mpsk_snr_est { @@ -41,6 +55,12 @@ class DIGITAL_API digital_impl_mpsk_snr_est double d_alpha, d_beta; public: + /*! Constructor + * + * Parameters: + * \li \p alpha: the update rate of internal running average + * calculations. + */ digital_impl_mpsk_snr_est(double alpha); virtual ~digital_impl_mpsk_snr_est(); @@ -59,6 +79,14 @@ class DIGITAL_API digital_impl_mpsk_snr_est }; +//! \brief SNR Estimator using simple mean/variance estimates. +/*! \ingroup snr_blk + * + * A very simple SNR estimator that just uses mean and variance + * estimates of an M-PSK constellation. This esimator is quick and + * cheap and accurate for high SNR (above 7 dB or so) but quickly + * starts to overestimate the SNR at low SNR. + */ class DIGITAL_API digital_impl_mpsk_snr_est_simple : public digital_impl_mpsk_snr_est { @@ -66,6 +94,12 @@ class DIGITAL_API digital_impl_mpsk_snr_est_simple : double d_y1, d_y2; public: + /*! Constructor + * + * Parameters: + * \li \p alpha: the update rate of internal running average + * calculations. + */ digital_impl_mpsk_snr_est_simple(double alpha); ~digital_impl_mpsk_snr_est_simple() {} @@ -75,6 +109,16 @@ class DIGITAL_API digital_impl_mpsk_snr_est_simple : }; +//! \brief SNR Estimator using skewness correction. +/*! \ingroup snr_blk + * + * This is an estimator that came from a discussion between Tom + * Rondeau and fred harris with no known paper reference. The idea is + * that at low SNR, the variance estimations will be affected because + * of fold-over around the decision boundaries, which results in a + * skewness to the samples. We estimate the skewness and use this as + * a correcting term. + */ class DIGITAL_API digital_impl_mpsk_snr_est_skew : public digital_impl_mpsk_snr_est { @@ -82,6 +126,12 @@ class DIGITAL_API digital_impl_mpsk_snr_est_skew : double d_y1, d_y2, d_y3; public: + /*! Constructor + * + * Parameters: + * \li \p alpha: the update rate of internal running average + * calculations. + */ digital_impl_mpsk_snr_est_skew(double alpha); ~digital_impl_mpsk_snr_est_skew() {} @@ -91,6 +141,22 @@ class DIGITAL_API digital_impl_mpsk_snr_est_skew : }; +//! \brief SNR Estimator using 2nd and 4th-order moments. +/*! \ingroup snr_blk + * + * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th (M4) + * order moments. This estimator uses knowledge of the kurtosis of + * the signal (k_a) and noise (k_w) to make its estimation. We use + * Beaulieu's approximations here to M-PSK signals and AWGN channels + * such that k_a=1 and k_w=2. These approximations significantly + * reduce the complexity of the calculations (and computations) + * required. + * + * Reference: + * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR + * estimation techniques for the AWGN channel," IEEE + * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000. + */ class DIGITAL_API digital_impl_mpsk_snr_est_m2m4 : public digital_impl_mpsk_snr_est { @@ -98,20 +164,11 @@ class DIGITAL_API digital_impl_mpsk_snr_est_m2m4 : double d_y1, d_y2; public: - /*! \brief SNR Estimator using 2nd and 4th-order moments. - * - * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th - * (M4) order moments. This estimator uses knowledge of the - * kurtosis of the signal (k_a) and noise (k_w) to make its - * estimation. We use Beaulieu's approximations here to M-PSK - * signals and AWGN channels such that k_a=1 and k_w=2. These - * approximations significantly reduce the complexity of the - * calculations (and computations) required. + /*! Constructor * - * Reference: - * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR - * estimation techniques for the AWGN channel," IEEE - * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000. + * Parameters: + * \li \p alpha: the update rate of internal running average + * calculations. */ digital_impl_mpsk_snr_est_m2m4(double alpha); ~digital_impl_mpsk_snr_est_m2m4() {} @@ -121,6 +178,37 @@ class DIGITAL_API digital_impl_mpsk_snr_est_m2m4 : double snr(); }; + +//! \brief SNR Estimator using 2nd and 4th-order moments. +/*! \ingroup snr_blk + * + * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th (M4) + * order moments. This estimator uses knowledge of the kurtosis of + * the signal (k_a) and noise (k_w) to make its estimation. In this + * case, you can set your own estimations for k_a and k_w, the + * kurtosis of the signal and noise, to fit this estimation better to + * your signal and channel conditions. + * + * A word of warning: this estimator has not been fully tested or + * proved with any amount of rigor. The estimation for M4 in + * particular might be ignoring effectf of when k_a and k_w are + * different. Use this estimator with caution and a copy of the + * reference on hand. + * + * The digital_mpsk_snr_est_m2m4 assumes k_a and k_w to simplify the + * computations for M-PSK and AWGN channels. Use that estimator + * unless you have a way to guess or estimate these values here. + * + * Original paper: + * R. Matzner, "An SNR estimation algorithm for complex baseband + * signal using higher order statistics," Facta Universitatis + * (Nis), no. 6, pp. 41-52, 1993. + * + * Reference used in derivation: + * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR + * estimation techniques for the AWGN channel," IEEE + * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000. + */ class DIGITAL_API digital_impl_snr_est_m2m4 : public digital_impl_mpsk_snr_est { @@ -129,34 +217,13 @@ class DIGITAL_API digital_impl_snr_est_m2m4 : double d_ka, d_kw; public: - /*! \brief SNR Estimator using 2nd and 4th-order moments. - * - * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th - * (M4) order moments. This estimator uses knowledge of the - * kurtosis of the signal (k_a) and noise (k_w) to make its - * estimation. In this case, you can set your own estimations for - * k_a and k_w, the kurtosis of the signal and noise, to fit this - * estimation better to your signal and channel conditions. - * - * A word of warning: this estimator has not been fully tested or - * proved with any amount of rigor. The estimation for M4 in - * particular might be ignoring effectf of when k_a and k_w are - * different. Use this estimator with caution and a copy of the - * reference on hand. - * - * The digital_mpsk_snr_est_m2m4 assumes k_a and k_w to simplify - * the computations for M-PSK and AWGN channels. Use that estimator - * unless you have a way to guess or estimate these values here. + /*! Constructor * - * Original paper: - * R. Matzner, "An SNR estimation algorithm for complex baseband - * signal using higher order statistics," Facta Universitatis - * (Nis), no. 6, pp. 41-52, 1993. - * - * Reference used in derivation: - * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR - * estimation techniques for the AWGN channel," IEEE - * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000. + * Parameters: + * \li \p alpha: the update rate of internal running average + * calculations. + * \li \p ka: estimate of the signal kurtosis (1 for PSK) + * \li \p kw: estimate of the channel noise kurtosis (2 for AWGN) */ digital_impl_snr_est_m2m4(double alpha, double ka, double kw); ~digital_impl_snr_est_m2m4() {} @@ -167,6 +234,27 @@ class DIGITAL_API digital_impl_snr_est_m2m4 : }; +//! \brief Signal-to-Variation Ratio SNR Estimator. +/*! \ingroup snr_blk + * + * This estimator actually comes from an SNR estimator for M-PSK + * signals in fading channels, but this implementation is + * specifically for AWGN channels. The math was simplified to assume + * a signal and noise kurtosis (k_a and k_w) for M-PSK signals in + * AWGN. These approximations significantly reduce the complexity of + * the calculations (and computations) required. + * + * Original paper: + * A. L. Brandao, L. B. Lopes, and D. C. McLernon, "In-service + * monitoring of multipath delay and cochannel interference for + * indoor mobile communication systems," Proc. IEEE + * Int. Conf. Communications, vol. 3, pp. 1458-1462, May 1994. + * + * Reference: + * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR + * estimation techniques for the AWGN channel," IEEE + * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000. + */ class DIGITAL_API digital_impl_mpsk_snr_est_svr : public digital_impl_mpsk_snr_est { @@ -174,25 +262,11 @@ class DIGITAL_API digital_impl_mpsk_snr_est_svr : double d_y1, d_y2; public: - /*! \brief Signal-to-Variation Ratio SNR Estimator. - * - * This estimator actually comes from an SNR estimator for M-PSK - * signals in fading channels, but this implementation is - * specifically for AWGN channels. The math was simplified to - * assume a signal and noise kurtosis (k_a and k_w) for M-PSK - * signals in AWGN. These approximations significantly reduce the - * complexity of the calculations (and computations) required. - * - * Original paper: - * A. L. Brandao, L. B. Lopes, and D. C. McLernon, "In-service - * monitoring of multipath delay and cochannel interference for - * indoor mobile communication systems," Proc. IEEE - * Int. Conf. Communications, vol. 3, pp. 1458-1462, May 1994. + /*! Constructor * - * Reference: - * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR - * estimation techniques for the AWGN channel," IEEE - * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000. + * Parameters: + * \li \p alpha: the update rate of internal running average + * calculations. */ digital_impl_mpsk_snr_est_svr(double alpha); ~digital_impl_mpsk_snr_est_svr() {} |