summaryrefslogtreecommitdiff
path: root/gr-digital/include/digital_impl_mpsk_snr_est.h
diff options
context:
space:
mode:
authorTom Rondeau2011-12-29 18:30:27 -0500
committerTom Rondeau2011-12-29 18:30:27 -0500
commit36dda1f11620c6c9db63036d76a67b3be3f711bc (patch)
tree81eba2a0287406cb7cc14838009652c5c40e23e9 /gr-digital/include/digital_impl_mpsk_snr_est.h
parent062f4f37c8dd543cbd29ab4a4745534497c920a8 (diff)
downloadgnuradio-36dda1f11620c6c9db63036d76a67b3be3f711bc.tar.gz
gnuradio-36dda1f11620c6c9db63036d76a67b3be3f711bc.tar.bz2
gnuradio-36dda1f11620c6c9db63036d76a67b3be3f711bc.zip
digital: added documentation for SNR estimators; made a Doxygen group for them. Also set the alpha value to a default of 0.001; most won't need to change this.
Diffstat (limited to 'gr-digital/include/digital_impl_mpsk_snr_est.h')
-rw-r--r--gr-digital/include/digital_impl_mpsk_snr_est.h194
1 files changed, 134 insertions, 60 deletions
diff --git a/gr-digital/include/digital_impl_mpsk_snr_est.h b/gr-digital/include/digital_impl_mpsk_snr_est.h
index e530782bc..5a85d100b 100644
--- a/gr-digital/include/digital_impl_mpsk_snr_est.h
+++ b/gr-digital/include/digital_impl_mpsk_snr_est.h
@@ -25,6 +25,19 @@
#include <digital_api.h>
#include <gr_sync_block.h>
+//! Enum for the type of SNR estimator to select
+/*! \ingroup snr_blk
+ * \anchor ref_snr_est_types
+ *
+ * Below are some ROUGH estimates of what values of SNR each of these
+ * types of estimators is good for. In general, these offer a
+ * trade-off between accuracy and performance.
+ *
+ * \li SNR_EST_SIMPLE: Simple estimator (>= 7 dB)
+ * \li SNR_EST_SKEW: Skewness-base est (>= 5 dB)
+ * \li SNR_EST_M2M4: 2nd & 4th moment est (>= 1 dB)
+ * \li SNR_EST_SVR: SVR-based est (>= 0dB)
+*/
enum snr_est_type_t {
SNR_EST_SIMPLE = 0, // Simple estimator (>= 7 dB)
SNR_EST_SKEW, // Skewness-base est (>= 5 dB)
@@ -32,8 +45,9 @@ enum snr_est_type_t {
SNR_EST_SVR // SVR-based est (>= 0dB)
};
-/*!
- * Parent class for SNR Estimators
+/*! \brief A parent class for SNR estimators, specifically for M-PSK
+ * signals in AWGN channels.
+ * \ingroup snr_blk
*/
class DIGITAL_API digital_impl_mpsk_snr_est
{
@@ -41,6 +55,12 @@ class DIGITAL_API digital_impl_mpsk_snr_est
double d_alpha, d_beta;
public:
+ /*! Constructor
+ *
+ * Parameters:
+ * \li \p alpha: the update rate of internal running average
+ * calculations.
+ */
digital_impl_mpsk_snr_est(double alpha);
virtual ~digital_impl_mpsk_snr_est();
@@ -59,6 +79,14 @@ class DIGITAL_API digital_impl_mpsk_snr_est
};
+//! \brief SNR Estimator using simple mean/variance estimates.
+/*! \ingroup snr_blk
+ *
+ * A very simple SNR estimator that just uses mean and variance
+ * estimates of an M-PSK constellation. This esimator is quick and
+ * cheap and accurate for high SNR (above 7 dB or so) but quickly
+ * starts to overestimate the SNR at low SNR.
+ */
class DIGITAL_API digital_impl_mpsk_snr_est_simple :
public digital_impl_mpsk_snr_est
{
@@ -66,6 +94,12 @@ class DIGITAL_API digital_impl_mpsk_snr_est_simple :
double d_y1, d_y2;
public:
+ /*! Constructor
+ *
+ * Parameters:
+ * \li \p alpha: the update rate of internal running average
+ * calculations.
+ */
digital_impl_mpsk_snr_est_simple(double alpha);
~digital_impl_mpsk_snr_est_simple() {}
@@ -75,6 +109,16 @@ class DIGITAL_API digital_impl_mpsk_snr_est_simple :
};
+//! \brief SNR Estimator using skewness correction.
+/*! \ingroup snr_blk
+ *
+ * This is an estimator that came from a discussion between Tom
+ * Rondeau and fred harris with no known paper reference. The idea is
+ * that at low SNR, the variance estimations will be affected because
+ * of fold-over around the decision boundaries, which results in a
+ * skewness to the samples. We estimate the skewness and use this as
+ * a correcting term.
+ */
class DIGITAL_API digital_impl_mpsk_snr_est_skew :
public digital_impl_mpsk_snr_est
{
@@ -82,6 +126,12 @@ class DIGITAL_API digital_impl_mpsk_snr_est_skew :
double d_y1, d_y2, d_y3;
public:
+ /*! Constructor
+ *
+ * Parameters:
+ * \li \p alpha: the update rate of internal running average
+ * calculations.
+ */
digital_impl_mpsk_snr_est_skew(double alpha);
~digital_impl_mpsk_snr_est_skew() {}
@@ -91,6 +141,22 @@ class DIGITAL_API digital_impl_mpsk_snr_est_skew :
};
+//! \brief SNR Estimator using 2nd and 4th-order moments.
+/*! \ingroup snr_blk
+ *
+ * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th (M4)
+ * order moments. This estimator uses knowledge of the kurtosis of
+ * the signal (k_a) and noise (k_w) to make its estimation. We use
+ * Beaulieu's approximations here to M-PSK signals and AWGN channels
+ * such that k_a=1 and k_w=2. These approximations significantly
+ * reduce the complexity of the calculations (and computations)
+ * required.
+ *
+ * Reference:
+ * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR
+ * estimation techniques for the AWGN channel," IEEE
+ * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000.
+ */
class DIGITAL_API digital_impl_mpsk_snr_est_m2m4 :
public digital_impl_mpsk_snr_est
{
@@ -98,20 +164,11 @@ class DIGITAL_API digital_impl_mpsk_snr_est_m2m4 :
double d_y1, d_y2;
public:
- /*! \brief SNR Estimator using 2nd and 4th-order moments.
- *
- * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th
- * (M4) order moments. This estimator uses knowledge of the
- * kurtosis of the signal (k_a) and noise (k_w) to make its
- * estimation. We use Beaulieu's approximations here to M-PSK
- * signals and AWGN channels such that k_a=1 and k_w=2. These
- * approximations significantly reduce the complexity of the
- * calculations (and computations) required.
+ /*! Constructor
*
- * Reference:
- * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR
- * estimation techniques for the AWGN channel," IEEE
- * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000.
+ * Parameters:
+ * \li \p alpha: the update rate of internal running average
+ * calculations.
*/
digital_impl_mpsk_snr_est_m2m4(double alpha);
~digital_impl_mpsk_snr_est_m2m4() {}
@@ -121,6 +178,37 @@ class DIGITAL_API digital_impl_mpsk_snr_est_m2m4 :
double snr();
};
+
+//! \brief SNR Estimator using 2nd and 4th-order moments.
+/*! \ingroup snr_blk
+ *
+ * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th (M4)
+ * order moments. This estimator uses knowledge of the kurtosis of
+ * the signal (k_a) and noise (k_w) to make its estimation. In this
+ * case, you can set your own estimations for k_a and k_w, the
+ * kurtosis of the signal and noise, to fit this estimation better to
+ * your signal and channel conditions.
+ *
+ * A word of warning: this estimator has not been fully tested or
+ * proved with any amount of rigor. The estimation for M4 in
+ * particular might be ignoring effectf of when k_a and k_w are
+ * different. Use this estimator with caution and a copy of the
+ * reference on hand.
+ *
+ * The digital_mpsk_snr_est_m2m4 assumes k_a and k_w to simplify the
+ * computations for M-PSK and AWGN channels. Use that estimator
+ * unless you have a way to guess or estimate these values here.
+ *
+ * Original paper:
+ * R. Matzner, "An SNR estimation algorithm for complex baseband
+ * signal using higher order statistics," Facta Universitatis
+ * (Nis), no. 6, pp. 41-52, 1993.
+ *
+ * Reference used in derivation:
+ * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR
+ * estimation techniques for the AWGN channel," IEEE
+ * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000.
+ */
class DIGITAL_API digital_impl_snr_est_m2m4 :
public digital_impl_mpsk_snr_est
{
@@ -129,34 +217,13 @@ class DIGITAL_API digital_impl_snr_est_m2m4 :
double d_ka, d_kw;
public:
- /*! \brief SNR Estimator using 2nd and 4th-order moments.
- *
- * An SNR estimator for M-PSK signals that uses 2nd (M2) and 4th
- * (M4) order moments. This estimator uses knowledge of the
- * kurtosis of the signal (k_a) and noise (k_w) to make its
- * estimation. In this case, you can set your own estimations for
- * k_a and k_w, the kurtosis of the signal and noise, to fit this
- * estimation better to your signal and channel conditions.
- *
- * A word of warning: this estimator has not been fully tested or
- * proved with any amount of rigor. The estimation for M4 in
- * particular might be ignoring effectf of when k_a and k_w are
- * different. Use this estimator with caution and a copy of the
- * reference on hand.
- *
- * The digital_mpsk_snr_est_m2m4 assumes k_a and k_w to simplify
- * the computations for M-PSK and AWGN channels. Use that estimator
- * unless you have a way to guess or estimate these values here.
+ /*! Constructor
*
- * Original paper:
- * R. Matzner, "An SNR estimation algorithm for complex baseband
- * signal using higher order statistics," Facta Universitatis
- * (Nis), no. 6, pp. 41-52, 1993.
- *
- * Reference used in derivation:
- * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR
- * estimation techniques for the AWGN channel," IEEE
- * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000.
+ * Parameters:
+ * \li \p alpha: the update rate of internal running average
+ * calculations.
+ * \li \p ka: estimate of the signal kurtosis (1 for PSK)
+ * \li \p kw: estimate of the channel noise kurtosis (2 for AWGN)
*/
digital_impl_snr_est_m2m4(double alpha, double ka, double kw);
~digital_impl_snr_est_m2m4() {}
@@ -167,6 +234,27 @@ class DIGITAL_API digital_impl_snr_est_m2m4 :
};
+//! \brief Signal-to-Variation Ratio SNR Estimator.
+/*! \ingroup snr_blk
+ *
+ * This estimator actually comes from an SNR estimator for M-PSK
+ * signals in fading channels, but this implementation is
+ * specifically for AWGN channels. The math was simplified to assume
+ * a signal and noise kurtosis (k_a and k_w) for M-PSK signals in
+ * AWGN. These approximations significantly reduce the complexity of
+ * the calculations (and computations) required.
+ *
+ * Original paper:
+ * A. L. Brandao, L. B. Lopes, and D. C. McLernon, "In-service
+ * monitoring of multipath delay and cochannel interference for
+ * indoor mobile communication systems," Proc. IEEE
+ * Int. Conf. Communications, vol. 3, pp. 1458-1462, May 1994.
+ *
+ * Reference:
+ * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR
+ * estimation techniques for the AWGN channel," IEEE
+ * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000.
+ */
class DIGITAL_API digital_impl_mpsk_snr_est_svr :
public digital_impl_mpsk_snr_est
{
@@ -174,25 +262,11 @@ class DIGITAL_API digital_impl_mpsk_snr_est_svr :
double d_y1, d_y2;
public:
- /*! \brief Signal-to-Variation Ratio SNR Estimator.
- *
- * This estimator actually comes from an SNR estimator for M-PSK
- * signals in fading channels, but this implementation is
- * specifically for AWGN channels. The math was simplified to
- * assume a signal and noise kurtosis (k_a and k_w) for M-PSK
- * signals in AWGN. These approximations significantly reduce the
- * complexity of the calculations (and computations) required.
- *
- * Original paper:
- * A. L. Brandao, L. B. Lopes, and D. C. McLernon, "In-service
- * monitoring of multipath delay and cochannel interference for
- * indoor mobile communication systems," Proc. IEEE
- * Int. Conf. Communications, vol. 3, pp. 1458-1462, May 1994.
+ /*! Constructor
*
- * Reference:
- * D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR
- * estimation techniques for the AWGN channel," IEEE
- * Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000.
+ * Parameters:
+ * \li \p alpha: the update rate of internal running average
+ * calculations.
*/
digital_impl_mpsk_snr_est_svr(double alpha);
~digital_impl_mpsk_snr_est_svr() {}