summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py
diff options
context:
space:
mode:
authorTom Rondeau2012-02-07 18:32:09 -0500
committerTom Rondeau2012-02-13 14:57:27 -0500
commit786058aacbe0ca662e14ea5f00f1c0872a599577 (patch)
treeeaa9ba40117b54a544b532b2f1f7bfa909c42266 /gnuradio-examples/python/volk_benchmark/volk_test_funcs.py
parent75bb99df4720789749c059a0207507a3cbdd3855 (diff)
downloadgnuradio-786058aacbe0ca662e14ea5f00f1c0872a599577.tar.gz
gnuradio-786058aacbe0ca662e14ea5f00f1c0872a599577.tar.bz2
gnuradio-786058aacbe0ca662e14ea5f00f1c0872a599577.zip
volk: adding an examples directory with scripts to benchmark and compare volk-optimized GR blocks.
Diffstat (limited to 'gnuradio-examples/python/volk_benchmark/volk_test_funcs.py')
-rw-r--r--gnuradio-examples/python/volk_benchmark/volk_test_funcs.py171
1 files changed, 171 insertions, 0 deletions
diff --git a/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py b/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py
new file mode 100644
index 000000000..4f4e4afd3
--- /dev/null
+++ b/gnuradio-examples/python/volk_benchmark/volk_test_funcs.py
@@ -0,0 +1,171 @@
+#!/usr/bin/env python
+
+from gnuradio import gr
+import math, sys, os, time
+
+try:
+ import scipy
+except ImportError:
+ sys.stderr.write("Unable to import Scipy (www.scipy.org)\n")
+ sys.exit(1)
+
+try:
+ import sqlite3
+except ImportError:
+ sys.stderr.write("Unable to import sqlite3: requires Python 2.5\n")
+ sys.exit(1)
+
+def execute(conn, cmd):
+ '''
+ Executes the command cmd to the database opened in connection conn.
+ '''
+ c = conn.cursor()
+ c.execute(cmd)
+ conn.commit()
+ c.close()
+
+def create_connection(database):
+ '''
+ Returns a connection object to the SQLite database.
+ '''
+ return sqlite3.connect(database)
+
+def new_table(conn, tablename):
+ '''
+ Create a new table for results.
+ All results are in the form: [kernel | nitems | iters | avg. time | variance | max time | min time ]
+ Each table is meant as a different setting (e.g., volk_aligned, volk_unaligned, etc.)
+ '''
+ cols = "kernel text, nitems int, iters int, avg real, var real, max real, min real"
+ cmd = "create table if not exists {0} ({1})".format(
+ tablename, cols)
+ execute(conn, cmd)
+
+def replace_results(conn, tablename, nitems, iters, res):
+ '''
+ Inserts or replaces the results 'res' dictionary values into the table.
+ This deletes all old entries of the kernel in this table.
+ '''
+ cmd = "DELETE FROM {0} where kernel='{1}'".format(tablename, res["kernel"])
+ execute(conn, cmd)
+ insert_results(conn, tablename, nitems, iters, res)
+
+def insert_results(conn, tablename, nitems, iters, res):
+ '''
+ Inserts the results dictionary values into the table.
+ '''
+ cols = "kernel, nitems, iters, avg, var, max, min"
+ cmd = "INSERT INTO {0} ({1}) VALUES ('{2}', {3}, {4}, {5}, {6}, {7}, {8})".format(
+ tablename, cols, res["kernel"], nitems, iters,
+ res["avg"], res["var"], res["max"], res["min"])
+ execute(conn, cmd)
+
+def list_tables(conn):
+ '''
+ Returns a list of all tables in the database.
+ '''
+ cmd = "SELECT name FROM sqlite_master WHERE type='table' ORDER BY name"
+ c = conn.cursor()
+ c.execute(cmd)
+ t = c.fetchall()
+ c.close()
+
+ return t
+
+def get_results(conn, tablename):
+ '''
+ Gets all results in tablename.
+ '''
+ cmd = "SELECT * FROM {0}".format(tablename)
+ c = conn.cursor()
+ c.execute(cmd)
+ fetched = c.fetchall()
+ c.close()
+
+ res = list()
+ for f in fetched:
+ r = dict()
+ r['kernel'] = f[0]
+ r['nitems'] = f[1]
+ r['iters'] = f[2]
+ r['avg'] = f[3]
+ r['var'] = f[4]
+ r['min'] = f[5]
+ r['max'] = f[6]
+ res.append(r)
+
+ return res
+
+
+class helper(gr.top_block):
+ '''
+ Helper function to run the tests. The parameters are:
+ N: number of items to process (int)
+ op: The GR block/hier_block to test
+ isizeof: the sizeof the input type
+ osizeof: the sizeof the output type
+ nsrcs: number of inputs to the op
+ nsnks: number of outputs of the op
+
+ This function can only handle blocks where all inputs are the same
+ datatype and all outputs are the same data type
+ '''
+ def __init__(self, N, op,
+ isizeof=gr.sizeof_gr_complex,
+ osizeof=gr.sizeof_gr_complex,
+ nsrcs=1, nsnks=1):
+ gr.top_block.__init__(self, "helper")
+
+ self.op = op
+ self.srcs = []
+ self.snks = []
+ self.head = gr.head(isizeof, N)
+
+ for n in xrange(nsrcs):
+ self.srcs.append(gr.null_source(isizeof))
+
+ for n in xrange(nsnks):
+ self.snks.append(gr.null_sink(osizeof))
+
+ self.connect(self.srcs[0], self.head, (self.op,0))
+
+ for n in xrange(1, nsrcs):
+ self.connect(self.srcs[n], (self.op,n))
+
+ for n in xrange(nsnks):
+ self.connect((self.op,n), self.snks[n])
+
+def timeit(tb, iterations):
+ '''
+ Given a top block, this function times it for a number of
+ iterations and stores the time in a list that is returned.
+ '''
+ r = gr.enable_realtime_scheduling()
+ if r != gr.RT_OK:
+ print "Warning: failed to enable realtime scheduling"
+
+ times = []
+ for i in xrange(iterations):
+ start_time = time.time()
+ tb.run()
+ end_time = time.time()
+ tb.head.reset()
+
+ times.append(end_time - start_time)
+
+ return times
+
+def format_results(kernel, times):
+ '''
+ Convinience function to convert the results of the timeit function
+ into a dictionary.
+ '''
+ res = dict()
+ res["kernel"] = kernel
+ res["avg"] = scipy.mean(times)
+ res["var"] = scipy.var(times)
+ res["max"] = max(times)
+ res["min"] = min(times)
+ return res
+
+