diff options
author | trondeau | 2007-03-07 04:31:19 +0000 |
---|---|---|
committer | trondeau | 2007-03-07 04:31:19 +0000 |
commit | 28e086141aead2e43f958f0ae14d58cac557fa2d (patch) | |
tree | 1ae54b3d508506d4ea25c7e8a335c5e2cd56dcef /gnuradio-core/src/lib/general | |
parent | 224434889bf564a4456011180c62a58e0ca55c8f (diff) | |
download | gnuradio-28e086141aead2e43f958f0ae14d58cac557fa2d.tar.gz gnuradio-28e086141aead2e43f958f0ae14d58cac557fa2d.tar.bz2 gnuradio-28e086141aead2e43f958f0ae14d58cac557fa2d.zip |
merged trondeau/digital-wip2 r4193:4730 into trunk - improves digital receiver and fixes ticket:72
git-svn-id: http://gnuradio.org/svn/gnuradio/trunk@4731 221aa14e-8319-0410-a670-987f0aec2ac5
Diffstat (limited to 'gnuradio-core/src/lib/general')
-rw-r--r-- | gnuradio-core/src/lib/general/Makefile.am | 3 | ||||
-rw-r--r-- | gnuradio-core/src/lib/general/general.i | 2 | ||||
-rw-r--r-- | gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.cc | 121 | ||||
-rw-r--r-- | gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.h | 9 | ||||
-rw-r--r-- | gnuradio-core/src/lib/general/gr_correlate_access_code_bb.cc | 9 | ||||
-rw-r--r-- | gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.cc | 345 | ||||
-rw-r--r-- | gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.h | 313 | ||||
-rw-r--r-- | gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.i | 59 |
8 files changed, 815 insertions, 46 deletions
diff --git a/gnuradio-core/src/lib/general/Makefile.am b/gnuradio-core/src/lib/general/Makefile.am index d29259b4a..3856a319a 100644 --- a/gnuradio-core/src/lib/general/Makefile.am +++ b/gnuradio-core/src/lib/general/Makefile.am @@ -88,6 +88,7 @@ libgeneral_la_SOURCES = \ gr_map_bb.cc \ gr_math.cc \ gr_misc.cc \ + gr_mpsk_receiver_cc.cc \ gr_nlog10_ff.cc \ gr_nop.cc \ gr_null_sink.cc \ @@ -211,6 +212,7 @@ grinclude_HEADERS = \ gr_map_bb.h \ gr_math.h \ gr_misc.h \ + gr_mpsk_receiver_cc.h \ gr_nco.h \ gr_nlog10_ff.h \ gr_nop.h \ @@ -337,6 +339,7 @@ swiginclude_HEADERS = \ gr_lms_dfe_cc.i \ gr_lms_dfe_ff.i \ gr_map_bb.i \ + gr_mpsk_receiver_cc.i \ gr_nlog10_ff.i \ gr_nop.i \ gr_null_sink.i \ diff --git a/gnuradio-core/src/lib/general/general.i b/gnuradio-core/src/lib/general/general.i index b659beb52..87368f81e 100644 --- a/gnuradio-core/src/lib/general/general.i +++ b/gnuradio-core/src/lib/general/general.i @@ -67,6 +67,7 @@ #include <gr_nlog10_ff.h> #include <gr_fake_channel_coder_pp.h> #include <gr_throttle.h> +#include <gr_mpsk_receiver_cc.h> #include <gr_stream_to_streams.h> #include <gr_streams_to_stream.h> #include <gr_streams_to_vector.h> @@ -157,6 +158,7 @@ %include "gr_nlog10_ff.i" %include "gr_fake_channel_coder_pp.i" %include "gr_throttle.i" +%include "gr_mpsk_receiver_cc.i" %include "gr_stream_to_streams.i" %include "gr_streams_to_stream.i" %include "gr_streams_to_vector.i" diff --git a/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.cc b/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.cc index 88cd14077..6166e25e6 100644 --- a/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.cc +++ b/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.cc @@ -133,47 +133,90 @@ gr_clock_recovery_mm_cc::general_work (int noutput_items, float mm_val=0; gr_complex u, x, y; - while(oo < noutput_items && ii < ni) { - d_p_2T = d_p_1T; - d_p_1T = d_p_0T; - d_p_0T = d_interp->interpolate (&in[ii], d_mu); - - d_c_2T = d_c_1T; - d_c_1T = d_c_0T; - d_c_0T = slicer_0deg(d_p_0T); - - x = (d_c_0T - d_c_2T) * conj(d_p_1T); - y = (d_p_0T - d_p_2T) * conj(d_c_1T); - u = y - x; - mm_val = u.real(); - out[oo++] = d_p_0T; - - // limit mm_val - if (mm_val > 1.0) - mm_val = 1.0; - else if (mm_val < -1.0) - mm_val = -1.0; - - d_omega = d_omega + d_gain_omega * mm_val; - if (d_omega > d_max_omega) - d_omega = d_max_omega; - else if (d_omega < d_min_omega) - d_omega = d_min_omega; - - d_mu = d_mu + d_omega + d_gain_mu * mm_val; - ii += (int)floor(d_mu); - d_mu -= floor(d_mu); - - if(d_verbose) { + // This loop writes the error to the second output, if it exists + if (write_foptr) { + while(oo < noutput_items && ii < ni) { + d_p_2T = d_p_1T; + d_p_1T = d_p_0T; + d_p_0T = d_interp->interpolate (&in[ii], d_mu); + + d_c_2T = d_c_1T; + d_c_1T = d_c_0T; + d_c_0T = slicer_0deg(d_p_0T); + + x = (d_c_0T - d_c_2T) * conj(d_p_1T); + y = (d_p_0T - d_p_2T) * conj(d_c_1T); + u = y - x; + mm_val = u.real(); + out[oo++] = d_p_0T; + + // limit mm_val + if (mm_val > 1.0) + mm_val = 1.0; + else if (mm_val < -1.0) + mm_val = -1.0; + + d_omega = d_omega + d_gain_omega * mm_val; + if (d_omega > d_max_omega) + d_omega = d_max_omega; + else if (d_omega < d_min_omega) + d_omega = d_min_omega; + + d_mu = d_mu + d_omega + d_gain_mu * mm_val; + ii += (int)floor(d_mu); + d_mu -= floor(d_mu); + + #if 0 printf("%f\t%f\n", d_omega, d_mu); - } - - // write the error signal to the second output - if (write_foptr) + #endif + + // write the error signal to the second output foptr[oo-1] = gr_complex(d_mu,0); - - if (ii < 0) // clamp it. This should only happen with bogus input - ii = 0; + + if (ii < 0) // clamp it. This should only happen with bogus input + ii = 0; + } + } + // This loop does not write to the second output (ugly, but faster) + else { + while(oo < noutput_items && ii < ni) { + d_p_2T = d_p_1T; + d_p_1T = d_p_0T; + d_p_0T = d_interp->interpolate (&in[ii], d_mu); + + d_c_2T = d_c_1T; + d_c_1T = d_c_0T; + d_c_0T = slicer_0deg(d_p_0T); + + x = (d_c_0T - d_c_2T) * conj(d_p_1T); + y = (d_p_0T - d_p_2T) * conj(d_c_1T); + u = y - x; + mm_val = u.real(); + out[oo++] = d_p_0T; + + // limit mm_val + if (mm_val > 1.0) + mm_val = 1.0; + else if (mm_val < -1.0) + mm_val = -1.0; + + d_omega = d_omega + d_gain_omega * mm_val; + if (d_omega > d_max_omega) + d_omega = d_max_omega; + else if (d_omega < d_min_omega) + d_omega = d_min_omega; + + d_mu = d_mu + d_omega + d_gain_mu * mm_val; + ii += (int)floor(d_mu); + d_mu -= floor(d_mu); + + if(d_verbose) { + printf("%f\t%f\n", d_omega, d_mu); + } + + if (ii < 0) // clamp it. This should only happen with bogus input + ii = 0; + } } if (ii > 0){ diff --git a/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.h b/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.h index 0a2d73a94..c9a50358c 100644 --- a/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.h +++ b/gnuradio-core/src/lib/general/gr_clock_recovery_mm_cc.h @@ -41,10 +41,11 @@ gr_make_clock_recovery_mm_cc (float omega, float gain_omega, float mu, float gai * \ingroup block * * This implements the Mueller and Müller (M&M) discrete-time error-tracking synchronizer. - * - * See "Digital Communication Receivers: Synchronization, Channel - * Estimation and Signal Processing" by Heinrich Meyr, Marc Moeneclaey, & Stefan Fechtel. - * ISBN 0-471-50275-8. + * The complex version here is based on: + * Modified Mueller and Muller clock recovery circuit + * Based: + * G. R. Danesfahani, T.G. Jeans, "Optimisation of modified Mueller and Muller + * algorithm," Electronics Letters, Vol. 31, no. 13, 22 June 1995, pp. 1032 - 1033. */ class gr_clock_recovery_mm_cc : public gr_block { diff --git a/gnuradio-core/src/lib/general/gr_correlate_access_code_bb.cc b/gnuradio-core/src/lib/general/gr_correlate_access_code_bb.cc index 18253e968..078ff5028 100644 --- a/gnuradio-core/src/lib/general/gr_correlate_access_code_bb.cc +++ b/gnuradio-core/src/lib/general/gr_correlate_access_code_bb.cc @@ -88,7 +88,7 @@ gr_correlate_access_code_bb::work (int noutput_items, { const unsigned char *in = (const unsigned char *) input_items[0]; unsigned char *out = (unsigned char *) output_items[0]; - + for (int i = 0; i < noutput_items; i++){ // compute output value @@ -109,9 +109,12 @@ gr_correlate_access_code_bb::work (int noutput_items, // test for access code with up to threshold errors new_flag = (nwrong <= d_threshold); -#if 0 +#if VERBOSE if(new_flag) { - printf("%llx ==> %llx : d_flip=%u\n", d_access_code, d_data_reg, d_flip); + fprintf(stderr, "access code found: %llx\n", d_access_code); + } + else { + fprintf(stderr, "%llx ==> %llx\n", d_access_code, d_data_reg); } #endif diff --git a/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.cc b/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.cc new file mode 100644 index 000000000..87b2f541a --- /dev/null +++ b/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.cc @@ -0,0 +1,345 @@ +/* -*- c++ -*- */ +/* + * Copyright 2005,2006,2007 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <gr_io_signature.h> +#include <gr_prefs.h> +#include <gr_mpsk_receiver_cc.h> +#include <stdexcept> +#include <gr_math.h> +#include <gr_expj.h> +#include <gri_mmse_fir_interpolator_cc.h> + + +#define M_TWOPI (2*M_PI) +#define VERBOSE_MM 0 // Used for debugging symbol timing loop +#define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking + +// Public constructor + +gr_mpsk_receiver_cc_sptr +gr_make_mpsk_receiver_cc(unsigned int M, float theta, + float alpha, float beta, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel) +{ + return gr_mpsk_receiver_cc_sptr (new gr_mpsk_receiver_cc (M, theta, + alpha, beta, + fmin, fmax, + mu, gain_mu, + omega, gain_omega, omega_rel)); +} + +gr_mpsk_receiver_cc::gr_mpsk_receiver_cc (unsigned int M, float theta, + float alpha, float beta, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel) + : gr_block ("mpsk_receiver_cc", + gr_make_io_signature (1, 1, sizeof (gr_complex)), + gr_make_io_signature (1, 1, sizeof (gr_complex))), + d_M(M), d_theta(theta), + d_alpha(alpha), d_beta(beta), d_freq(0), d_max_freq(fmax), d_min_freq(fmin), d_phase(0), + d_current_const_point(0), + d_mu(mu), d_gain_mu(gain_mu), d_gain_omega(gain_omega), + d_omega_rel(omega_rel), d_max_omega(0), d_min_omega(0), + d_p_2T(0), d_p_1T(0), d_p_0T(0), d_c_2T(0), d_c_1T(0), d_c_0T(0) +{ + d_interp = new gri_mmse_fir_interpolator_cc(); + d_dl_idx = 0; + + set_omega(omega); + + if (omega <= 0.0) + throw std::out_of_range ("clock rate must be > 0"); + if (gain_mu < 0 || gain_omega < 0) + throw std::out_of_range ("Gains must be non-negative"); + + assert(d_interp->ntaps() <= DLLEN); + + // zero double length delay line. + for (unsigned int i = 0; i < 2 * DLLEN; i++) + d_dl[i] = gr_complex(0.0,0.0); + + // build the constellation vector from M + make_constellation(); + + // Select a phase detector and a decision maker for the modulation order + switch(d_M) { + case 2: // optimized algorithms for BPSK + d_phase_error_detector = &gr_mpsk_receiver_cc::phase_error_detector_generic; //bpsk; + d_decision = &gr_mpsk_receiver_cc::decision_generic; //bpsk; + break; + + case 4: // optimized algorithms for QPSK + d_phase_error_detector = &gr_mpsk_receiver_cc::phase_error_detector_generic; //qpsk; + d_decision = &gr_mpsk_receiver_cc::decision_generic; //qpsk; + break; + + default: // generic algorithms for any M (power of 2?) but not pretty + d_phase_error_detector = &gr_mpsk_receiver_cc::phase_error_detector_generic; + d_decision = &gr_mpsk_receiver_cc::decision_generic; + break; + } + + set_history(3); // ensure 2 extra input sample is available +} + +gr_mpsk_receiver_cc::~gr_mpsk_receiver_cc () +{ + delete d_interp; +} + +void +gr_mpsk_receiver_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) +{ + unsigned ninputs = ninput_items_required.size(); + for (unsigned i=0; i < ninputs; i++) + ninput_items_required[i] = (int) ceil((noutput_items * d_omega) + d_interp->ntaps()); + //ninput_items_required[i] = (int)(d_omega); + +} + +// FIXME add these back in an test difference in performance +float +gr_mpsk_receiver_cc::phase_error_detector_qpsk(gr_complex sample) const +{ + float phase_error = ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() - + (sample.imag()>0 ? 1.0 : -1.0) * sample.real()); + return -phase_error; +} + +// FIXME add these back in an test difference in performance +float +gr_mpsk_receiver_cc::phase_error_detector_bpsk(gr_complex sample) const +{ + return (sample.real()*sample.imag()); +} + +float gr_mpsk_receiver_cc::phase_error_detector_generic(gr_complex sample) const +{ + //return gr_fast_atan2f(sample*conj(d_constellation[d_current_const_point])); + return -arg(sample*conj(d_constellation[d_current_const_point])); +} + +// FIXME add these back in an test difference in performance +unsigned int +gr_mpsk_receiver_cc::decision_bpsk(gr_complex sample) const +{ + unsigned int index = 0; + + // Implements a 1-demensional slicer + if(sample.real() > 0) + index = 1; + return index; +} + +// FIXME add these back in an test difference in performance +unsigned int +gr_mpsk_receiver_cc::decision_qpsk(gr_complex sample) const +{ + unsigned int index = 0; + + // Implements a simple slicer function + if((sample.real() < 0) && (sample.imag() > 0)) + index = 1; + else if((sample.real() < 0) && (sample.imag() < 0)) + index = 2; + else + index = 3; + return index; +} + +unsigned int +gr_mpsk_receiver_cc::decision_generic(gr_complex sample) const +{ + unsigned int min_m = 0; + float min_s = 65535; + + // Develop all possible constellation points and find the one that minimizes + // the Euclidean distance (error) with the sample + for(unsigned int m=0; m < d_M; m++) { + gr_complex diff = norm(d_constellation[m] - sample); + + if(fabs(diff.real()) < min_s) { + min_s = fabs(diff.real()); + min_m = m; + } + } + // Return the index of the constellation point that minimizes the error + return min_m; +} + + +void +gr_mpsk_receiver_cc::make_constellation() +{ + for(unsigned int m=0; m < d_M; m++) { + d_constellation.push_back(gr_expj((M_TWOPI/d_M)*m)); + } +} + +void +gr_mpsk_receiver_cc::mm_sampler(const gr_complex symbol) +{ + gr_complex sample, nco; + + d_mu--; // skip a number of symbols between sampling + d_phase += d_freq; // increment the phase based on the frequency of the rotation + + // Keep phase clamped and not walk to infinity + while(d_phase>M_TWOPI) + d_phase -= M_TWOPI; + while(d_phase<-M_TWOPI) + d_phase += M_TWOPI; + + nco = gr_expj(d_phase+d_theta); // get the NCO value for derotating the current sample + sample = nco*symbol; // get the downconverted symbol + + // Fill up the delay line for the interpolator + d_dl[d_dl_idx] = sample; + d_dl[(d_dl_idx + DLLEN)] = sample; // put this in the second half of the buffer for overflows + d_dl_idx = (d_dl_idx+1) % DLLEN; // Keep the delay line index in bounds +} + +void +gr_mpsk_receiver_cc::mm_error_tracking(gr_complex sample) +{ + gr_complex u, x, y; + float mm_error = 0; + + // Make sample timing corrections + + // set the delayed samples + d_p_2T = d_p_1T; + d_p_1T = d_p_0T; + d_p_0T = sample; + d_c_2T = d_c_1T; + d_c_1T = d_c_0T; + + d_current_const_point = (*this.*d_decision)(d_p_0T); // make a decision on the sample value + d_c_0T = d_constellation[d_current_const_point]; + + x = (d_c_0T - d_c_2T) * conj(d_p_1T); + y = (d_p_0T - d_p_2T) * conj(d_c_1T); + u = y - x; + mm_error = u.real(); // the error signal is in the real part + + // limit mm_val + if (mm_error > 1.0) + mm_error = 1.0; + else if (mm_error < -1.0) + mm_error = -1.0; + + d_omega = d_omega + d_gain_omega * mm_error; // update omega based on loop error + + // make sure we don't walk away + if (d_omega > d_max_omega) + d_omega = d_max_omega; + else if (d_omega < d_min_omega) + d_omega = d_min_omega; + + d_mu += d_omega + d_gain_mu * mm_error; // update mu based on loop error + +#if VERBOSE_MM + printf("mm: mu: %f omega: %f mm_error: %f sample: %f+j%f constellation: %f+j%f\n", + d_mu, d_omega, mm_error, sample.real(), sample.imag(), + d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag()); +#endif +} + + +void +gr_mpsk_receiver_cc::phase_error_tracking(gr_complex sample) +{ + float phase_error = 0; + + // Make phase and frequency corrections based on sampled value + phase_error = (*this.*d_phase_error_detector)(sample); + + if (phase_error > 1) + phase_error = 1; + else if (phase_error < -1) + phase_error = -1; + + d_freq += d_beta*phase_error; // adjust frequency based on error + d_phase += d_freq + d_alpha*phase_error; // adjust phase based on error + + // Make sure we stay within +-2pi + while(d_phase>M_TWOPI) + d_phase -= M_TWOPI; + while(d_phase<-M_TWOPI) + d_phase += M_TWOPI; + + // Limit the frequency range + if (d_freq > d_max_freq) + d_freq = d_max_freq; + else if (d_freq < d_min_freq) + d_freq = d_min_freq; + +#if VERBOSE_COSTAS + printf("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f constellation: %f+j%f\n", + phase_error, d_phase, d_freq, sample.real(), sample.imag(), + d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag()); +#endif +} + +int +gr_mpsk_receiver_cc::general_work (int noutput_items, + gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, + gr_vector_void_star &output_items) +{ + const gr_complex *in = (const gr_complex *) input_items[0]; + gr_complex *out = (gr_complex *) output_items[0]; + + int i=0, o=0; + + //while(i < ninput_items[0]) { + while(o < noutput_items) { + while((d_mu > 1) && (i < ninput_items[0])) { + mm_sampler(in[i]); // puts symbols into a buffer and adjusts d_mu + i++; + } + + if(i < ninput_items[0]) { + gr_complex interp_sample = d_interp->interpolate(&d_dl[d_dl_idx], d_mu); + + mm_error_tracking(interp_sample); // corrects M&M sample time + phase_error_tracking(interp_sample); // corrects phase and frequency offsets + + out[o++] = interp_sample; + } + } + + #if 0 + printf("ninput_items: %d noutput_items: %d consuming: %d returning: %d\n", + ninput_items[0], noutput_items, i, o); + #endif + + consume_each(i); + return o; +} diff --git a/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.h b/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.h new file mode 100644 index 000000000..f096af484 --- /dev/null +++ b/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.h @@ -0,0 +1,313 @@ +/* -*- c++ -*- */ +/* + * Copyright 2004 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#ifndef INCLUDED_GR_MPSK_RECEIVER_CC_H +#define INCLUDED_GR_MPSK_RECEIVER_CC_H + +#include <gr_block.h> +#include <gr_complex.h> +#include <fstream> + +class gri_mmse_fir_interpolator_cc; + +class gr_mpsk_receiver_cc; +typedef boost::shared_ptr<gr_mpsk_receiver_cc> gr_mpsk_receiver_cc_sptr; + +// public constructor +gr_mpsk_receiver_cc_sptr +gr_make_mpsk_receiver_cc (unsigned int M, float theta, + float alpha, float beta, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel); + +/*! + * \brief This block takes care of receiving M-PSK modulated signals through phase, frequency, and symbol + * synchronization. + * \ingroup block + * + * This block takes care of receiving M-PSK modulated signals through phase, frequency, and symbol + * synchronization. It performs carrier frequency and phase locking as well as symbol timing recovery. + * It works with (D)BPSK, (D)QPSK, and (D)8PSK as tested currently. It should also work for OQPSK and + * PI/4 DQPSK. + * + * The phase and frequency synchronization are based on a Costas loop that finds the error of the incoming + * signal point compared to its nearest constellation point. The frequency and phase of the NCO are + * updated according to this error. There are optimized phase error detectors for BPSK and QPSK, but 8PSK + * is done using a brute-force computation of the constellation points to find the minimum. + * + * The symbol synchronization is done using a modified Mueller and Muller circuit from the paper: + * + * G. R. Danesfahani, T.G. Jeans, "Optimisation of modified Mueller and Muller + * algorithm," Electronics Letters, Vol. 31, no. 13, 22 June 1995, pp. 1032 - 1033. + * + * This circuit interpolates the downconverted sample (using the NCO developed by the Costas loop) + * every mu samples, then it finds the sampling error based on this and the past symbols and the decision + * made on the samples. Like the phase error detector, there are optimized decision algorithms for BPSK + * and QPKS, but 8PSK uses another brute force computation against all possible symbols. The modifications + * to the M&M used here reduce self-noise. + * + */ + +class gr_mpsk_receiver_cc : public gr_block +{ + public: + ~gr_mpsk_receiver_cc (); + void forecast(int noutput_items, gr_vector_int &ninput_items_required); + int general_work (int noutput_items, + gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, + gr_vector_void_star &output_items); + + + // Member functions related to the symbol tracking portion of the receiver + //! (M&M) Returns current value of mu + float mu() const { return d_mu;} + + //! (M&M) Returns current value of omega + float omega() const { return d_omega;} + + //! (M&M) Returns mu gain factor + float gain_mu() const { return d_gain_mu;} + + //! (M&M) Returns omega gain factor + float gain_omega() const { return d_gain_omega;} + + //! (M&M) Sets value of mu + void set_mu (float mu) { d_mu = mu; } + + //! (M&M) Sets value of omega and its min and max values + void set_omega (float omega) { + d_omega = omega; + d_min_omega = omega*(1.0 - d_omega_rel); + d_max_omega = omega*(1.0 + d_omega_rel); + } + + //! (M&M) Sets value for mu gain factor + void set_gain_mu (float gain_mu) { d_gain_mu = gain_mu; } + + //! (M&M) Sets value for omega gain factor + void set_gain_omega (float gain_omega) { d_gain_omega = gain_omega; } + + + + // Member function related to the phase/frequency tracking portion of the receiver + //! (CL) Returns the value for alpha (the phase gain term) + float alpha() const { return d_alpha; } + + //! (CL) Returns the value of beta (the frequency gain term) + float beta() const { return d_beta; } + + //! (CL) Returns the current value of the frequency of the NCO in the Costas loop + float freq() const { return d_freq; } + + //! (CL) Returns the current value of the phase of the NCO in the Costal loop + float phase() const { return d_phase; } + + //! (CL) Sets the value for alpha (the phase gain term) + void set_alpha(float alpha) { d_alpha = alpha; } + + //! (CL) Setss the value of beta (the frequency gain term) + void set_beta(float beta) { d_beta = beta; } + + //! (CL) Sets the current value of the frequency of the NCO in the Costas loop + void set_freq(float freq) { d_freq = freq; } + + //! (CL) Setss the current value of the phase of the NCO in the Costal loop + void set_phase(float phase) { d_phase = phase; } + + +protected: + + /*! + * \brief Constructor to synchronize incoming M-PSK symbols + * + * \param M modulation order of the M-PSK modulation + * \param theta any constant phase rotation from the real axis of the constellation + * \param alpha gain parameter to adjust the phase in the Costas loop (~0.01) + * \param beta gain parameter to adjust the frequency in the Costas loop (~alpha^2/4) + * \param fmin minimum normalized frequency value the loop can achieve + * \param fmax maximum normalized frequency value the loop can achieve + * \param mu initial parameter for the interpolator [0,1] + * \param gain_mu gain parameter of the M&M error signal to adjust mu (~0.05) + * \param omega initial value for the number of symbols between samples (~number of samples/symbol) + * \param gain_omega gain parameter to adjust omega based on the error (~omega^2/4) + * \param omega_rel sets the maximum (omega*(1+omega_rel)) and minimum (omega*(1+omega_rel)) omega (~0.005) + * + * The constructor also chooses which phase detector and decision maker to use in the work loop based on the + * value of M. + */ + gr_mpsk_receiver_cc (unsigned int M, float theta, + float alpha, float beta, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel); + + void make_constellation(); + void mm_sampler(const gr_complex symbol); + void mm_error_tracking(gr_complex sample); + void phase_error_tracking(gr_complex sample); + + +/*! + * \brief Phase error detector for MPSK modulations. + * + * \param sample the I&Q sample from which to determine the phase error + * + * This function determines the phase error for any MPSK signal by creating a set of PSK constellation points + * and doing a brute-force search to see which point minimizes the Euclidean distance. This point is then used + * to derotate the sample to the real-axis and a atan (using the fast approximation function) to determine the + * phase difference between the incoming sample and the real constellation point + * + * This should be cleaned up and made more efficient. + * + * \returns the approximated phase error. + */ + float phase_error_detector_generic(gr_complex sample) const; // generic for M but more costly + + /*! + * \brief Phase error detector for BPSK modulation. + * + * \param sample the I&Q sample from which to determine the phase error + * + * This function determines the phase error using a simple BPSK phase error detector by multiplying the real + * and imaginary (the error signal) components together. As the imaginary part goes to 0, so does this error. + * + * \returns the approximated phase error. + */ + float phase_error_detector_bpsk(gr_complex sample) const; // optimized for BPSK + + /*! + * \brief Phase error detector for QPSK modulation. + * + * \param sample the I&Q sample from which to determine the phase error + * + * This function determines the phase error using the limiter approach in a standard 4th order Costas loop + * + * \returns the approximated phase error. + */ + float phase_error_detector_qpsk(gr_complex sample) const; + + + + /*! + * \brief Decision maker for a generic MPSK constellation. + * + * \param sample the baseband I&Q sample from which to make the decision + * + * This decision maker is a generic implementation that does a brute-force search + * for the constellation point that minimizes the error between it and the incoming signal. + * + * \returns the index to d_constellation that minimizes the error/ + */ + unsigned int decision_generic(gr_complex sample) const; + + + /*! + * \brief Decision maker for BPSK constellation. + * + * \param sample the baseband I&Q sample from which to make the decision + * + * This decision maker is a simple slicer function that makes a decision on the symbol based on its + * placement on the real axis of greater than 0 or less than 0; the quadrature component is always 0. + * + * \returns the index to d_constellation that minimizes the error/ + */ + unsigned int decision_bpsk(gr_complex sample) const; + + + /*! + * \brief Decision maker for QPSK constellation. + * + * \param sample the baseband I&Q sample from which to make the decision + * + * This decision maker is a simple slicer function that makes a decision on the symbol based on its + * placement versus both axes and returns which quadrant the symbol is in. + * + * \returns the index to d_constellation that minimizes the error/ + */ + unsigned int decision_qpsk(gr_complex sample) const; + + private: + unsigned int d_M; + float d_theta; + + // Members related to carrier and phase tracking + float d_alpha; + float d_beta; + float d_freq, d_max_freq, d_min_freq; + float d_phase; + +/*! + * \brief Decision maker function pointer + * + * \param sample the baseband I&Q sample from which to make the decision + * + * This is a function pointer that is set in the constructor to point to the proper decision function + * for the specified constellation order. + * + * \return index into d_constellation point that is the closest to the recieved sample + */ + unsigned int (gr_mpsk_receiver_cc::*d_decision)(gr_complex sample) const; // pointer to decision function + + + std::vector<gr_complex> d_constellation; + unsigned int d_current_const_point; + + // Members related to symbol timing + float d_mu, d_gain_mu; + float d_omega, d_gain_omega, d_omega_rel, d_max_omega, d_min_omega; + gr_complex d_p_2T, d_p_1T, d_p_0T; + gr_complex d_c_2T, d_c_1T, d_c_0T; + + /*! + * \brief Phase error detector function pointer + * + * \param sample the I&Q sample from which to determine the phase error + * + * This is a function pointer that is set in the constructor to point to the proper phase error detector + * function for the specified constellation order. + */ + float (gr_mpsk_receiver_cc::*d_phase_error_detector)(gr_complex sample) const; + + + //! get interpolated value + gri_mmse_fir_interpolator_cc *d_interp; + + //! delay line length. + static const unsigned int DLLEN = 8; + + //! delay line plus some length for overflow protection + gr_complex d_dl[2*DLLEN]; + + //! index to delay line + unsigned int d_dl_idx; + + friend gr_mpsk_receiver_cc_sptr + gr_make_mpsk_receiver_cc (unsigned int M, float theta, + float alpha, float beta, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel); +}; + +#endif diff --git a/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.i b/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.i new file mode 100644 index 000000000..661b4d04d --- /dev/null +++ b/gnuradio-core/src/lib/general/gr_mpsk_receiver_cc.i @@ -0,0 +1,59 @@ +/* -*- c++ -*- */ +/* + * Copyright 2004 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +GR_SWIG_BLOCK_MAGIC(gr,mpsk_receiver_cc); + +gr_mpsk_receiver_cc_sptr gr_make_mpsk_receiver_cc (unsigned int M, float theta, + float alpha, float beta, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel); +class gr_mpsk_receiver_cc : public gr_block +{ + private: + gr_mpsk_receiver_cc (unsigned int M,float theta, + float alpha, float beta, + float fmin, float fmax, + float mu, float gain_mu, + float omega, float gain_omega, float omega_rel); +public: + float mu() const { return d_mu;} + float omega() const { return d_omega;} + float gain_mu() const { return d_gain_mu;} + float gain_omega() const { return d_gain_omega;} + void set_mu (float mu) { d_mu = mu; } + void set_omega (float omega) { + d_omega = omega; + d_min_omega = omega*(1.0 - d_omega_rel); + d_max_omega = omega*(1.0 + d_omega_rel); + } + void set_gain_mu (float gain_mu) { d_gain_mu = gain_mu; } + void set_gain_omega (float gain_omega) { d_gain_omega = gain_omega; } + float alpha() const { return d_alpha; } + float beta() const { return d_beta; } + float freq() const { return d_freq; } + float phase() const { return d_phase; } + void set_alpha(float alpha) { d_alpha = alpha; } + void set_beta(float beta) { d_beta = beta; } + void set_freq(float freq) { d_freq = freq; } + void set_phase(float phase) { d_phase = phase; } +}; |