blob: 3bc693b2df5b5f695f4075b1a98d7c6fcdd954b3 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
-- Copyright (C) 2002 Morgan Kaufmann Publishers, Inc
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
library ieee; use ieee.std_logic_1164.all;
library ieee_proposed; use ieee_proposed.electrical_systems.all;
entity a2d_nbit is
port ( signal start : in std_ulogic; -- Start signal
signal clk : in std_ulogic; -- Strobe clock
terminal ain : electrical; -- Analog input terminal
signal eoc : out std_ulogic := '0'; -- End of conversion pin
signal dout : out std_ulogic_vector(9 downto 0) ); -- Digital output signal
end entity a2d_nbit;
----------------------------------------------------------------
architecture sar of a2d_nbit is
constant Vmax : real := 5.0; -- ADC's maximum range
constant delay : time := 10 us; -- ADC's conversion time
type states is (input, convert); -- Two states of A2D Conversion
constant bit_range : integer := 9; -- Bit range for dtmp and dout
quantity Vin across Iin through ain to electrical_ref; -- ADC's input branch
begin
sa_adc: process is
variable thresh : real := Vmax; -- Threshold to test input voltage against
variable Vtmp : real := Vin; -- Snapshot of input voltage
-- when conversion starts
variable dtmp : std_ulogic_vector(bit_range downto 0); -- Temp. output data
variable status : states := input; -- Begin with "input" case
variable bit_cnt : integer := bit_range;
begin
case status is
when input => -- Read input voltages when start goes high
wait on start until start = '1' or start = 'H';
bit_cnt := bit_range; -- Reset bit_cnt for conversion
thresh := Vmax;
Vtmp := Vin; -- Variable to hold input comparison voltage
eoc <= '0'; -- Reset end of conversion
status := convert; -- Go to convert state
when convert => -- Begin successive approximation conversion
wait on clk until clk = '1' or clk = 'H';
thresh := thresh / 2.0; -- Get value of MSB
if Vtmp > thresh then
dtmp(bit_cnt) := '1'; -- Store '1' in dtmp variable vector
Vtmp := Vtmp - thresh; -- Prepare for next comparison
else
dtmp(bit_cnt) := '0'; -- Store '0' in dtmp variable vector
end if;
if bit_cnt > 0 then
bit_cnt := bit_cnt - 1; -- Decrement the bit count
else
dout <= dtmp; -- Put contents of dtmp on output pins
eoc <= '1' after delay; -- Signal end of conversion
status := input; -- Go to input state
end if;
end case;
end process sa_adc;
Iin == 0.0; -- Ideal input draws no current
end architecture sar;
|