1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
-- Copyright (C) 2000-2002 The University of Cincinnati.
-- All rights reserved.
-- This file is part of VESTs (Vhdl tESTs).
-- UC MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
-- SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
-- OR NON-INFRINGEMENT. UC SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
-- LICENSEE AS A RESULT OF USING, RESULT OF USING, MODIFYING OR
-- DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
-- By using or copying this Software, Licensee agrees to abide by the
-- intellectual property laws, and all other applicable laws of the U.S.,
-- and the terms of this license.
-- You may modify, distribute, and use the software contained in this
-- package under the terms of the "GNU GENERAL PUBLIC LICENSE" version 2,
-- June 1991. A copy of this license agreement can be found in the file
-- "COPYING", distributed with this archive.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: wein_bridge.ams,v 1.1 2002-03-27 22:11:20 paw Exp $
-- $Revision: 1.1 $
--
-- ---------------------------------------------------------------------
--^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-- REMARKS
-- -------
-- TESTED : Works great for freq of 1.0 KHz - 30.0MHz
-- COMMENTS : The Values of R1_a and R1_b have to be 18.0k & 32.0K resp.
-- The freq. is given by the equation
-- F = 1/(2*PI*R*C)
-- where R=R3=R4 and
-- C=C3=C4.
--^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
--*************************************************************************
-- Structural Level Model of a WEIN BRIDGE OSCILLATOR.
-- VHDL-AMS implementation
-- Developed at Distributed Processing Laboratory
-- University of Cincinnati
--*************************************************************************
--#########################################################################
-- BLOCK DIAGRAM
-- -------------
-- o V_out
-- | D1
-- |__________|\_______________
-- R1_a R1_b | |/ R2=10.0K |
-- -----^^^.^^^---o--------/\/\/\/\-----------|
-- | | T4 |__________/|_______________|
-- ------- | \| |
-- -- | D2 |
-- | |\ |
-- ------------------|-\ |
-- | \____________o T3
-- | / |
-- -------------------|+/ |
-- | |/ |
-- |T1 T2 |
-- _________o__________||____o_____/\/\/\/\_____|
-- | | ||
-- | | C4=16.0pF R4=10.0K
-- | <
-- C3 |16.0pF < R3=10.0K
-- ----- <
-- ----- |
-- | |
-- ------- -------
-- -- --
--
--#########################################################################
PACKAGE electricalsystem IS
NATURE electrical IS real ACROSS real THROUGH ground reference;
FUNCTION SIN(X:real) RETURN real;
FUNCTION COS(X:real) RETURN real;
FUNCTION EXP(X:real) RETURN real;
END PACKAGE electricalsystem;
------------------------ RESISTOR ---------------------------
use work.electricalsystem.all;
entity resistor is
generic(res :real:=1.0 );
port(terminal r_in,r_out: electrical);
end entity resistor;
architecture behav of resistor is
quantity vr across ir through r_in to r_out;
begin
vr==ir*res;
end architecture behav;
------------------------ CAPACITOR---------------------------
use work.electricalsystem.all;
entity capacitor is
generic(cap :real:=1.0);
port(terminal c_in,c_out: electrical);
end entity capacitor;
architecture behav of capacitor is
quantity vc across ic through c_in to c_out;
begin
init: break vc=>0.0;
ic==cap*vc'dot;
end architecture behav;
---------------------------- Diode -----------------------------
use work.electricalsystem.all;
entity diode is
generic (
Isat : real := 1.0e-14; -- saturatioin current
n : real := 1.0; -- emmission coefficient
bv : real := 1.0; -- reverse breakdown voltage
ibv : real := 1.0e-3; -- Breakdown current
rds : real := 1.0 -- Ohnic resistamce
);
port (terminal pos, neg : electrical);
end diode;
architecture behav of diode is
terminal td : electrical;
quantity vd across id through td to neg;
quantity vrd across ird through pos to td;
quantity vdiode : real := 2.0;
constant gmin : real := 1.0e-12; -- conductance
constant vt : real := 0.026; -- thermal voltage
begin -- behav
brk : break vd => 1.0;
diodecondition : if(vd >= -5.0*(vt*n)) use
dfow : id == ((isat*(exp(vd/(vt*n)) - 1.0)) + (gmin*vd));
elsif(vd < -5.0*(vt*n) and (vd > -1.0*bv)) use
drev: id == ((-1.0*isat) + (gmin*vd));
elsif vd = -1.0*bv use
dbv : id == -1.0*ibv;
elsif vd < -1.0*bv use
blbv : id == -1.0*Isat*(exp(-1.0*((bv + vd)/vt)) - 1.0 + (bv/vt));
end use;
diododeres : vrd == ird * rds;
diodevolt : vdiode == vd + vrd;
end behav;
-------------------- NPN transistor ---------------------------
use work.electricalsystem.all;
entity trans_npn is
port( terminal emitter,base,collector : electrical);
end trans_npn;
architecture trans_behav of trans_npn is
terminal t1,t2,t3,t4,t5,e,b :electrical;
constant Lb :real:=0.5e-9;
constant rb1 :real:=1.0;
constant rb2 :real:=3.1;
constant rb3 :real:=2.7;
constant r_pi :real:=110.0;
constant c_pi :real:=18.0e-12;
constant gm :real:=0.88;
constant cc1 :real:=0.091e-12;
constant cc2 :real:=0.048e-12;
constant cc3 :real:=0.023e-12;
constant Le :real:=0.2e-9;
constant Rbase:real:=22.0;
constant Remit:real:=0.6;
quantity v1 across i1 through b to t1;
quantity v2 across i2 through t1 to t2;
quantity v3 across i3 through t2 to t3;
quantity v4 across i4 through t3 to t4;
quantity v_pi across i5 through t4 to t5;
quantity i6 through t4 to t5;
quantity v7 across i7 through t1 to collector;
quantity v8 across i8 through t2 to collector;
quantity v9 across i9 through t3 to collector;
quantity v10 across i10 through t5 to e;
quantity v11 across i11 through collector to t5;
quantity v_base across i_base through base to b;
quantity v_emit across i_emit through e to emitter;
BEGIN
v1 ==Lb*i1'dot;
v2 ==i2*rb1;
v3 ==i3*rb2;
v4 ==i4*rb3;
v_pi==i5*r_pi;
i6 ==c_pi*v_pi'dot;
i7 ==cc1*v7'dot;
i8 ==cc2*v8'dot;
i9 ==cc3*v9'dot;
v10 ==Le*i10'dot;
i11 ==gm*v_pi;
v_base==rbase*i_base;
v_emit==remit*i_emit;
end architecture trans_behav;
-------------------- PNP transistor ---------------------------
use work.electricalsystem.all;
entity trans_pnp is
port( terminal emitter,base,collector : electrical);
end trans_pnp;
architecture trans_behav of trans_pnp is
terminal t1,t2,t3,t4,t5,e,b :electrical;
constant Lb :real:=0.5e-9;
constant rb1 :real:=1.0;
constant rb2 :real:=3.1;
constant rb3 :real:=2.7;
constant r_pi :real:=110.0;
constant c_pi :real:=18.0e-12;
constant gm :real:=0.88;
constant cc1 :real:=0.091e-12;
constant cc2 :real:=0.048e-12;
constant cc3 :real:=0.023e-12;
constant Le :real:=0.2e-9;
constant Rbase:real:=22.0;
constant Remit:real:=0.6;
quantity v1 across i1 through t1 to b;
quantity v2 across i2 through t2 to t1;
quantity v3 across i3 through t3 to t2;
quantity v4 across i4 through t4 to t3;
quantity v_pi across i5 through t5 to t4;
quantity i6 through t5 to t4;
quantity v7 across i7 through collector to t1;
quantity v8 across i8 through collector to t2;
quantity v9 across i9 through collector to t3;
quantity v10 across i10 through e to t5;
quantity v11 across i11 through t5 to collector;
quantity v_base across i_base through b to base;
quantity v_emit across i_emit through emitter to e;
BEGIN
v1 ==Lb*i1'dot;
v2 ==i2*rb1;
v3 ==i3*rb2;
v4 ==i4*rb3;
v_pi==i5*r_pi;
i6 ==c_pi*v_pi'dot;
i7 ==cc1*v7'dot;
i8 ==cc2*v8'dot;
i9 ==cc3*v9'dot;
v10 ==Le*i10'dot;
i11 ==gm*v_pi;
v_base==rbase*i_base;
v_emit==remit*i_emit;
end architecture trans_behav;
--> Constant Voltage source
---------------------------
use work.electricalsystem.all;
ENTITY voltSource IS
generic(amp:real:=22.0);
PORT( TERMINAL ta2,tb2 : electrical);
END voltSource;
ARCHITECTURE voltbehavior OF voltSource IS
terminal t1: electrical;
quantity V_volt across i_volt through t1 to tb2;
quantity V_drop across i_drop through ta2 to t1;
BEGIN
V_volt == amp;
V_drop == i_drop*100.0;
END ARCHITECTURE voltbehavior;
-- ********* Structural Model Of a simple High Frequency OpAmp *********--
use work.electricalsystem.all;
entity op_amp is
port(terminal inverting_ip,non_inverting_ip,output :electrical);
end entity op_amp;
architecture struct of op_amp is
--> components
COMPONENT trans_pnp is
port( terminal emitter,base,collector : electrical);
end component;
for all : trans_pnp use entity work.trans_pnp(trans_behav);
COMPONENT trans_npn is
port( terminal emitter,base,collector : electrical);
end component;
for all : trans_npn use entity work.trans_npn(trans_behav);
component resistor is
generic(res :real:=1.0 );
port(terminal r_in,r_out: electrical);
end component;
for all: resistor use entity work.resistor(behav);
component voltsource is
generic(amp:real:=22.0);
PORT( TERMINAL ta2,tb2 : electrical);
end component;
for all: voltsource use entity work.voltsource(voltbehavior);
terminal t1,t2,t3,t4,t5,t6,t7,t8,t9,t10:electrical;
terminal V_pos,V_neg: electrical;
BEGIN
Q01_npn: trans_npn port map(emitter=>T2 ,base=>T1 ,collector=>T9);
Q02_npn: trans_npn port map(emitter=>T2 ,base=>T3 ,collector=>T4);
Q03_npn: trans_npn port map(emitter=>T5 ,base=>T6 ,collector=>T2);
Q04_npn: trans_pnp port map(emitter=>T7 ,base=>T4 ,collector=>T8);
Q05_npn: trans_npn port map(emitter=>output,base=>T8 ,collector=>V_pos);
Res_i1 : resistor generic map(1.0e3)
port map(inverting_ip,T1);
Res_i2 : resistor generic map(1.0e3)
port map(non_inverting_ip,T3);
Res_a : resistor generic map(220.0e3)
port map(T6,V_pos);
Res_c1 : resistor generic map(13.0e3)
port map(T9,V_pos);
Res_c2 : resistor generic map(13.0e3)
port map(V_pos,T4);
Res_e4 : resistor generic map(10.0e3)
port map(V_pos,T7);
Res_b : resistor generic map(20.0e3)
port map(T6,V_neg);
Res_e3 : resistor generic map(1.3e3)
port map(T5,V_neg);
Res_c4 : resistor generic map(21.0e3)
port map(T8,V_neg);
Res_e5 : resistor generic map(12.0e3)
port map(output,V_neg);
vpos : voltsource generic map(amp=>15.0) -- test case
port map(V_pos,ground);
vneg : voltsource generic map(amp=>-15.0) -- test case
port map(V_neg,ground);
end architecture struct;
---------------------------------------------------------------------
------------------- WEIN BRIDGE OSCILLATOR ---------------------
---------------------------------------------------------------------
use work.electricalsystem.all;
entity wein_bridge_osc is
port( terminal signal_out :electrical);
end entity wein_bridge_osc;
architecture struct of wein_bridge_osc is
--> components
component op_amp is
port(terminal inverting_ip,non_inverting_ip,output :electrical);
end component;
for all:op_amp use entity work.op_amp(struct);
component diode
generic (
Isat : real := 1.0e-14; -- saturatioin current
n : real := 1.0; -- emmission coefficient
bv : real := 1.0; -- reverse breakdown voltage
ibv : real := 1.0e-3; -- Breakdown current
rds : real := 1.0 -- Ohnic resistamce
);
port (terminal pos, neg : electrical);
end component;
for all : diode use entity work.Diode(behav);
component capacitor is
generic(cap :real:=1.0);
port(terminal c_in,c_out: electrical);
end component;
for all: capacitor use entity work.capacitor(behav);
component resistor is
generic(res :real:=1.0 );
port(terminal r_in,r_out: electrical);
end component;
for all: resistor use entity work.resistor(behav);
terminal t1,t2,t3,t4: electrical;
begin
op_amplifier : op_amp port map(inverting_ip=>t4,non_inverting_ip=>t1,output=>t3);
D1 : diode port map(t3,signal_out);
D2 : diode port map(signal_out,t3);
R1_a : resistor generic map(18.0e3)
port map(t4, ground);
R1_b : resistor generic map(32.0e3)
port map(t4,signal_out);
R2 : resistor generic map(10.0e3)
port map(signal_out,t3);
R3 : resistor generic map(10.0e3)
port map(t1,ground);
R4 : resistor generic map(10.0e3)
port map(t2,t3);
C3 : capacitor generic map(16.0e-12)
port map(T1,ground);
C4 : capacitor generic map(16.0e-12)
port map(T1,T2);
end struct;
---------------------------- Test Bench -----------------------------
use work.electricalsystem.all;
entity testbench is
end entity;
architecture basic of testbench is
-->components
component wein_bridge_osc is
port( terminal signal_out :electrical);
end component;
for all: wein_bridge_osc use entity work.wein_bridge_osc(struct);
terminal t1: electrical;
quantity V_out across i_out through t1 to ground;
BEGIN
osc: wein_bridge_osc port map(T1);
V_out == i_out*1.0e6;
end basic;
|