1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
-- Copyright (C) 2001-2002 The University of Cincinnati.
-- All rights reserved.
-- This file is part of VESTs (Vhdl tESTs).
-- UC MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
-- SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
-- OR NON-INFRINGEMENT. UC SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
-- LICENSEE AS A RESULT OF USING, RESULT OF USING, MODIFYING OR
-- DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
-- By using or copying this Software, Licensee agrees to abide by the
-- intellectual property laws, and all other applicable laws of the U.S.,
-- and the terms of this license.
-- You may modify, distribute, and use the software contained in this
-- package under the terms of the "GNU GENERAL PUBLIC LICENSE" version 2,
-- June 1991. A copy of this license agreement can be found in the file
-- "COPYING", distributed with this archive.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: test145.ams,v 1.1 2002-03-27 22:11:19 paw Exp $
-- $Revision: 1.1 $
--
-- ---------------------------------------------------------------------
----------------------------------------------------------------------
-- SIERRA REGRESSION TESTING MODEL
-- Develooped at:
-- Distriburted Processing Laboratory
-- University of cincinnati
-- Cincinnati
----------------------------------------------------------------------
-- File : test145.ams
-- Author(s) : Geeta Balarkishnan(gbalakri@ececs.uc.edu)
-- Created : June 2001
----------------------------------------------------------------------
-- Description :
--this is a mos model. It tests for the correctness of the procedural
--statement.
--
--the model accepts the mos data as generic constants. The terminals
--are defined as of nature electrical.
--it also tests the alias declaration for real'low.
--Charges associated with the 4 terminals are declared as quantities.
--The voltage associated with each of them is also defined.
--a signal is used to drive i.e to carry out a generic initialization.
--The various mos equations are evaluated depending on the conditions.
--The equations for charges and currents are evaluated.
----------------------------------------------------------------------
package mosdata is
NATURE electrical is real across real through;
FUNCTION SIN(X : real) RETURN real;
FUNCTION EXP(X : real) RETURN real;
FUNCTION SQRT(X : real) RETURN real;
FUNCTION POW(X,Y : real) RETURN real;
alias undefined is real'low;
constant Temperature: real:=27.0;
constant eps0 : real :=8.85418e-12;
constant Ni : real :=1.45e16;
constant Boltzmann : real :=1.380662e-23;
constant echarge: real :=1.6021892e-19;
constant epsSiO2 : real :=3.9*eps0;
constant epsSi : real :=11.7*eps0;
constant kTQ : real :=Boltzmann*temperature/echarge;
constant pi: real := 3.14159;
end package mosdata;
use work.mosdata.all;
entity mos is
generic(
width : real:=1.0E-4;
length : real:=1.0E-4;
channel: real :=1.0;
kp :real:= 2.0E-5;
gamma :undefined;
phi :undefined;
tox :real:= 1.0E-7;
nsub :real:= 0.0;
nss :real:=0.0;
nfs :real:= 0.0;
tpg :real:= 1.0;
xj :real:=0.0;
ld :real:= 0.0;
u0 :real:= 600.0;
vmax :real:=0.0;
xqc :real:= 1.0;
kf :real:=0.0;
af :real:=1.0;
fc :real:=0.5;
delta :real:=0.0;
theta :real:=0.0;
eta :real:=0.0;
Sigma :real:=0.0;
kappa :real:=0.2 );
port ( terminal drain, gate, source, bulk : electrical);
end entity mos;
architecture amos of mos is
quantity Qc, Qb, Qg: real;
quantity Qcq, Qbq, Qgq : real; -- channel, bulk and gate charges
quantity Vdsq across drain to source;
quantity Vgsq across gate to source;
quantity Vbsq across bulk to source;
quantity Idq through drain;
quantity Igq through gate;
quantity Isq through source;
quantity Ibq through bulk;
signal Initialized: boolean; -- use a signal as generic initialisation
begin
MOSeqns: procedural is
variable
cox,vt,beta,sigma,nsub,Phi,Gamma,nss,ngate,A,B,C,D,Vfb,fshort,
wp,wc,sqwpxj,vbulk,delv,vth,Vgstos, Vgst,
Ueff,Tau,Vsat,Vpp,fdrain,
stfct,leff,xd,qnfscox,fn,dcrit,deltal,It,Ids,R,Vds,Vgs,Vbs,
forward ,egfet,fermig, mobdeg: real;
begin -- procedural statements
if not Initialized then
if tox<=0.0 then
cox:=epsSiO2/1.0e-7;
else
cox:=epsSiO2/tox;
end if;
if kp = 0.0 then
beta:=cox*u0;
else
beta:=kp;
end if;
nsub := nsub * 1.0e6; -- scale nsub to SI units
if (phi = undefined) then
if (nsub > 0.0) then
if (0.1<2.0*KTQ*(nsub/Ni)) then
Phi:=(2.0*kTQ*(nsub/Ni));
else
Phi:=0.1;
end if;
else
Phi:=0.6;
end if;
else
Phi:=phi;
end if;
if (gamma = undefined) then
if (nsub > 0.0) then
Gamma:=sqrt(2.0*epsSi*echarge*nsub)/cox;
else
Gamma:=0.0;
end if;
else
Gamma:=gamma;
end if;
nss:=nss*1.0e4; -- Scale to SI
ngate:=gamma*1.0e4; -- Scale to SI
leff:=length-2.0*ld;
if leff>0.0 then
Sigma:= eta * 8.15e-22/(cox*leff*leff*leff);
else
Sigma:=0.0;
end if;
if nsub>0.0 then -- N.B. nsub was scaled, above.
xd:=sqrt(2.0*epsSi/(echarge*nsub));
else
xd:=0.0;
end if;
if (nfs>0.0) and(cox>0.0) then
qnfscox:=echarge*nfs/cox;
else
qnfscox:=0.0;
end if;
if cox>0.0 then
fn:=delta*pi*epsSi*0.5/(cox*width);
else
fn:=delta*pi*epsSi*0.5*tox/epsSiO2;
end if;
--Scale beta and convert cox from Fm^-2 to F
beta:=beta*width/leff;
cox:=cox*width*leff;
Initialized <= true;
end if; -- not initialized
Vds:=channel*Vdsq;
if Vds>=0.0 then
Vgs:=channel* Vgsq;
Vbs:=channel* Vbsq;
forward:=1.0;
else
Vds:=-Vds;
Vgs:=channel* Vgsq;
Vbs:=channel* Vbsq;
forward:=-1.0;
end if;
if Vbs<=0.0 then
A:=Phi-Vbs;
D:=sqrt(A);
else
D:=2.0*sqrt(Phi)*Phi/(2.0*Phi+Vbs);
A:=D*D;
end if;
Vfb:=Vt-Gamma*sqrt(Phi)-Sigma*Vds;
if (xd=0.0) OR (xj=0.0) then
fshort:=1.0;
else
wp:=xd*D;
wc:=0.0631353*xj+0.8013292*wp-0.01110777*wp*wp/xj;
sqwpxj:=sqrt(1.0-(wp*wp/((wp+xj)*(wp+xj))));
fshort:=1.0-((ld+wc)*sqwpxj-ld)/leff;
end if;
vbulk:=Gamma*fshort*D+fn*A;
if nfs=0.0 then
delv:=0.0;
else
delv:=kTQ*(1.0+qnfscox+vbulk*0.5/A);
end if;
vth:=Vfb+vbulk;
Vgstos:=Vgs-Vfb;
if (vgs-vth > delv) then
Vgst:=Vgs-vth;
else
Vgst:= delv;
end if;
if (vgs>=vth) or (delv/=0.0) then
if (Vbs<=0.0) or (Phi /= 0.0) then
B:=0.5*Gamma/D+fn;
else
B:=fn;
end if;
mobdeg:=1.0/(1.0+theta*Vgst);
if (vmax /=0.0) then
Ueff:=u0*mobdeg;
Tau:=Ueff/Leff*vmax;
else
Tau:=0.0;
end if;
Vsat:=Vgst/(1.0+B);
Vsat:=Vsat*(1.0-0.5*Tau*Vsat); -- not quite the same as SPICE
if (vds<Vsat) then
Vpp:=vds;
else
Vpp:= Vsat;
end if;
fdrain:=1.0/(1.0+Tau*Vpp);
if (Vgs<vth+delv) and (nfs>0.0) then
stfct:=exp((Vgs-vth-delv)/delv);
else
stfct:=1.0;
end if;
if Vds>=Vsat then
if (kappa>0.0) and (xd>0.0) then
if vmax=0.0 then
deltal:=sqrt(kappa*xd*xd*(Vds-Vsat));
else
dcrit:=(xd*xd*vmax*0.5)/(Ueff*(1.0-fdrain));
deltal:=sqrt(kappa*xd*xd*(Vds-Vsat)+dcrit*dcrit)-dcrit;
end if;
if deltal<=0.5*Leff then
C:=Leff/(Leff-deltal);
else
C:=4.0*deltal/Leff;
end if;
else
C:=1.0;
end if;
else
C:=1.0;
end if;
It:=Vgst-Vpp*(1.0+B)*0.5;
Beta:=Beta*mobdeg;
Ids:=Beta*Vpp*It*C*fdrain*stfct;
else
-- Cutoff
Ids:=0.0;
end if; -- vgs >= vth
if Cox /= 0.0 then
--Charges
if Vgs<=vth then
if Gamma /= 0.0 then
if Vgstos < -A then
Qg:=Cox*(Vgstos+A); -- Accumulation
else
Qg:=0.5*Gamma*Cox*(sqrt(4.0*(Vgstos+A)+Gamma*Gamma-Gamma));
end if ; -- vgstos <-A
else-- Gamma = 0.0
Qg:=0.0;
end if; -- gamma /= 0
Qb:=-Qg;
Qc:=0.0;
else
-- depletion mode:
R:=(1.0+B)*Vpp*Vpp/(12.0*It);
Qg:=Cox*(Vgstos-Vpp*0.5+R);
Qc:=-Cox*(Vgst+(1.0+B)*(R-Vpp*0.5));
Qb:=-(Qc+Qg);
end if;
else
Qg:=0.0;
Qc:=0.0;
Qb:=0.0;
end if; -- cox /= 0
-- equations for charges (in a procedural we have assignments to
--quantitites):
Qcq := Qc;
Qgq := Qg;
Qbq := Qb;
-- equations for currents:
Idq := channel*forward*Ids+channel*xqc*Qc'dot;
Igq := channel*Qg'dot;
Ibq := channel*Qb'dot;
Isq := -Idq - Igq - Ibq;
end procedural;
end architecture amos;
|