1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
-- Copyright (C) 2000-2002 The University of Cincinnati.
-- All rights reserved.
-- This file is part of VESTs (Vhdl tESTs).
-- UC MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
-- SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
-- OR NON-INFRINGEMENT. UC SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
-- LICENSEE AS A RESULT OF USING, RESULT OF USING, MODIFYING OR
-- DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
-- By using or copying this Software, Licensee agrees to abide by the
-- intellectual property laws, and all other applicable laws of the U.S.,
-- and the terms of this license.
-- You may modify, distribute, and use the software contained in this
-- package under the terms of the "GNU GENERAL PUBLIC LICENSE" version 2,
-- June 1991. A copy of this license agreement can be found in the file
-- "COPYING", distributed with this archive.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: static_njfet.ams,v 1.1 2002-03-27 22:11:16 paw Exp $
-- $Revision: 1.1 $
--
-- ---------------------------------------------------------------------
-- This ckt is used to find the output and transfer characteristics of an
-- n-channel JFET model.
-- The model is Spice2 model, taken from the SPICE book, pg 142, fig 3.7
------------------------------------------------------------------------
-- The ckt used here is from sedra and smith's page no. 215, fig 5.18
------------------------------------------------------------------------
PACKAGE electricalSystem IS
NATURE electrical IS real ACROSS real THROUGH ground reference;
FUNCTION POW(X,Y: real) RETURN real;
FUNCTION SIN(X : real) RETURN real;
FUNCTION EXP(X : real) RETURN real;
FUNCTION SQRT(X : real) RETURN real;
END PACKAGE electricalSystem;
-----------------------------------------------------------------------
-- G D1 rd D
-- o-----|>|--o-------/\/\---------o
-- | |
-- - Id ( )
-- V |
-- - |
-- S1 o----------o
-- |
-- >
-- < rs
-- |
-- 0 S
-----------------------------------------------------------------------
----- NMOS
--use std.textio.all;
use work.electricalsystem.all;
entity njfet is
generic(T : real := 300.0;
vto : real := -2.0; -- Zero-bais threshold voltage
beta : real := 1.0e-4; -- transconductance parameter
lambda : real := 0.0; -- channel lenght modulation
af : real := 1.0; -- flicker noise exponent
kf : real := 0.0; -- flicker noise coefficient
iss : real := 1.0e-14; -- gate junction saturation current
pb : real := 1.0; -- gate junction potential
fc : real := 0.5; -- forward-bais depletion capacitance coeff
cgd : real := 4.0e-11; -- zero-bais gate-drain junction cap
cgs : real := 4.0e-11; -- zero-bias gate-source junction cap
rd : real := 1.0e-6; -- drain ohmic resistance
rs : real := 1.0e-6); -- source ohmic resistance
port (terminal g,s,d : electrical);
end entity njfet;
architecture behav of njfet is
terminal d1, s1 : electrical;
quantity vds across id through d1 to s1;
quantity vrd across ird through d to d1;
quantity vrs across irs through s1 to s;
quantity vgs across igs through g to s1;
quantity vgd across igd through g to d1;
constant gmin : real := 1.0e-12;
quantity ktq : real := 2.586e-2; -- (kT/q) thermal voltage at T=300K
--constant k : real := 1.38e-23; -- J/K ..... boltzman constant
-- T = 300 K ............ Absolute temperature
--constant q : real := 1.60e-19; -- C ....... magnitude of electron charge
quantity vds_free : real := 2.0;
quantity vgs_free : real := 0.0;
quantity vgd_free : real := 2.0;
begin
------ Setting initial conditions
initreg : break vgs => 0.0, vds => 2.0, vgd => 2.0;
therm_volt : ktq == 2.586e-2 * (T/300.0);
dres : vrd == ird * rd;
oup_res : vds_free == vds;
inp_res : vgs_free == vgs;
vgdf : vgd_free == vgd;
sres : vrs == irs * rs;
---- Current is in Amps.
-- Normal mode
------ Cut off Region
regions : if((vgs <= vto) and (vds >= 0.0))use
gncn : id == 1.0e-9 * vds;
------ Linear Region
elsif((vds < (vgs-vto)) and (vgs > vto) and (vds >= 0.0)) use
gnln : id == vds*beta*((2.0*(vgs_free-vto)) - vds_free)*(1.0 + lambda*vds_free);
------ Saturation Region
elsif((vds >= vgs-vto) and (vgs > vto) and (vds >= 0.0)) use
gnsn : id == beta*(pow((vgs_free-vto),2.0))*(1.0 + lambda*vds_free);
-- Inversted mode
------ Cut off Region
elsif((vgd <= vto) and (vds < 0.0))use
gnci : id == 1.0e-9 * vds;
------ Linear Region
elsif(((-1.0*vds) < (vgd-vto)) and (vgd > vto) and (vds < 0.0)) use
gnli : id == vds*beta*((2.0*(vgd_free-vto)) + vds_free)*(1.0 - lambda*vds_free);
------ Saturation Region
elsif(((-1.0*vds) >= vgd-vto) and (vgd > vto) and (vds < 0.0)) use
gnsi : id == -1.0*(beta)*(pow((vgd_free-vto),2.0))*(1.0 - lambda*vds_free);
end use;
----- Gate diode equations
initsub : break vgd => 0.0, vgs => 0.0, igs => 0.0, igd => 0.0;
----- Gate to source
subcond1 : if(vgs > -5.0*ktq) use
gsf : igs == ((iss*(exp(vgs/ktq) - 1.0)) + (gmin*vgs));
elsif(vgs <= -5.0*ktq ) use
gsr : igs == -1.0*iss + (gmin*vgs);
end use;
----- Gate to drain
subcond2 : if(vgd > -5.0*ktq) use
gdf : igd == ((iss*(exp(vgd/ktq) - 1.0)) + (gmin*vgd));
elsif(vgd <= -5.0*ktq ) use
gdr : igd == -1.0*iss + (gmin*vgd);
end use;
end architecture behav; --- of njfet;
---- DC Voltage source
use work.electricalsystem.all;
entity DCVSrc is
generic (v : real := 10.0); -- voltage
port (terminal pos, neg : electrical);
end entity DCVSrc;
architecture behav of DCVSrc is
terminal temp : electrical;
quantity vdc across idc through temp to neg;
quantity vtemp across itemp through pos to temp;
begin
VSrc : vdc == v;
temp_volt : vtemp == itemp * 1.0e-03;
end architecture behav; --- of DCVSrc
------ njfet amplifier circuit
use std.textio.all;
use work.electricalsystem.all;
entity njfet_ckt is
end entity;
architecture test of njfet_ckt is
terminal t1, t2, t3: electrical;
quantity vrd1 across ird1 through t1 to t2;
quantity vrs1 across irs1 through t3 to electrical'reference;
quantity vdd across idd through t1 to electrical'reference;
component njfet_comp is
generic(T : real := 300.0;
vto : real := -2.0; -- Zero-bais threshold voltage
beta : real := 1.0e-4; -- transconductance parameter
lambda : real := 0.0; -- channel lenght modulation
af : real := 1.0; -- flicker noise exponent
kf : real := 0.0; -- flicker noise coefficient
iss : real := 1.0e-14; -- gate junction saturation current
pb : real := 1.0; -- gate junction potential
fc : real := 0.5; -- forward-bais depletion capacitance coeff
cgd : real := 4.0e-11; -- zero-bais gate-drain junction cap
cgs : real := 4.0e-11; -- zero-bias gate-source junction cap
rd : real := 1.0e-6; -- drain ohmic resistance
rs : real := 1.0e-6); -- source ohmic resistance
port (terminal g,s,d : electrical);
end component;
for all :njfet_comp use entity work.njfet(behav);
begin
jn1 : njfet_comp
generic map(vto => -4.0, beta => 1.0e-3, lambda => 0.0)
port map(ground, t3, t2);
rd1 : vrd1 == ird1 * 1.0e3;
rs1 : vrs1 == irs1 * 0.5e3;
src : vdd == 10.0;
end architecture test; -- njfet_ckt
|