1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
-- Copyright (C) 2000-2002 The University of Cincinnati.
-- All rights reserved.
-- This file is part of VESTs (Vhdl tESTs).
-- UC MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
-- SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
-- OR NON-INFRINGEMENT. UC SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
-- LICENSEE AS A RESULT OF USING, RESULT OF USING, MODIFYING OR
-- DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
-- By using or copying this Software, Licensee agrees to abide by the
-- intellectual property laws, and all other applicable laws of the U.S.,
-- and the terms of this license.
-- You may modify, distribute, and use the software contained in this
-- package under the terms of the "GNU GENERAL PUBLIC LICENSE" version 2,
-- June 1991. A copy of this license agreement can be found in the file
-- "COPYING", distributed with this archive.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: static_cmos_inv_ramp.ams,v 1.1 2002-03-27 22:11:16 paw Exp $
-- $Revision: 1.1 $
--
-- ---------------------------------------------------------------------
-- This ckt is used to find the output characteristics of a cmos inverter
-- The ckt used here is from sedra and smith's page no. 565, fig 13.13
-- The mos W/L are according to the model specified in spice using the deck
-- provided in the book.
-- The vgs, resistance is now removed, to avoid the RC effect on the imput.
-- the ramp input is used
PACKAGE electricalSystem IS
NATURE electrical IS real ACROSS real THROUGH;
FUNCTION POW(X,Y: real) RETURN real;
FUNCTION SIN(X : real) RETURN real;
FUNCTION EXP(X : real) RETURN real;
FUNCTION SQRT(X : real) RETURN real;
END PACKAGE electricalSystem;
-----------------------------------------------------------------------
-- G B D1 1.0 ohm D
-- o o-----|>|--o---o----/\/\---------o /\
-- | | | | |+
-- Vgs < - Idsg( ) > Vdso
-- > V | < |-
-- | - | | |
-- S1 o------o--o------------------------------o S1V
-- |
-- >
-- < rs= 1.0 ohm
-- |
-- 0 S
-----------------------------------------------------------------------
----- NMOS
--use std.textio.all;
use work.electricalsystem.all;
entity nmos is
generic(mos_type : real := 1.0; -- +1.0 for nmos , -1.0 for pmos
T : real := 300.0;
W : real := 1.0;
L : real := 1.0;
vto : real := 1.0; -- Zero-bais threshold voltage
kp : real := 2.0e-5; -- transcondiuctanec parameter
gamma : real := 0.0; -- body-effect parameter
phi : real := 0.6; -- surface inversion potential
lambda : real := 0.02; -- channel lenght modulation
tox : real := 1.0e-7; -- thin oxide thickness
nsub : real := 0.0; -- Substrate doping
nss : real := 0.0; -- Surface STate density
ld : real := 0.0; -- lateral diffusion;
tpg : real := 1.0; -- Type of Gate material
uo : real := 600.0; -- Surface mobility
af : real := 1.0; -- flicker noise exponent
kf : real := 0.0; -- fliccker noise coefficient
iss : real := 1.0e-14; -- bulk junction saturation current
js : real := 0.0; -- bulk junctioin saturatioin current/ sqr meter
pb : real := 0.80; -- bulk junction potential
cj : real := 0.0; -- Zero-bias bulk capacitance/ sqr meter
mj : real := 0.5; -- bulk junctioin grading coefficient
cjsw : real := 0.0; -- Zero bias perimeter capacitance / sqr meter
mjsw : real := 0.33; -- Perimiter capacitance rading coefficient
fc : real := 0.5; -- forward-bais depletion capacitance coeff
-- cgbo : real := 4.0e-10; -- gate-bulk overlap cap / meter
-- cgdo : real := 1.5e-10; -- gate-drain overlap cap / meter
-- cgso : real := 1.5e-10; -- gate-source overlap cap / meter
cgbo : real := 2.0e-10; -- gate-bulk overlap cap / meter
cgdo : real := 4.0e-11; -- gate-drain overlap cap / meter
cgso : real := 4.0e-11; -- gate-source overlap cap / meter
rd : real := 1.0; -- drain ohmic resistance
rs : real := 1.0; -- source ohmic resistance
rsh : real := 0.0); -- source and drain sheet resistance
port (terminal g,s,d,b : electrical);
end entity nmos;
architecture behav of nmos is
terminal d1, s1 : electrical;
quantity vds across idsg through d1 to s1;
quantity vdsr across idsr through d1 to d;
quantity vgs across igs through g to s1;
quantity vbs across ibs through b to s1;
quantity vbd across ibd through b to d1;
-- new quantities added for source resistance
quantity vsr across isr through s1 to s;
quantity iss, isd : real := 1.0e-12;
quantity beta : real := 8.85e-05; -- gain
quantity leff : real := 1.0; -- effective length
constant gmin : real := 1.0e-12;
quantity vth : real := 0.5; -- threshold voltage
quantity ktq : real := 2.586e-2; -- (kT/q) thermal voltage at T=300K
--constant k : real := 1.38e-23; -- J/K ..... boltzman constant
-- T = 300 K ............ Absolute temperature
--constant q : real := 1.60e-19; -- C ....... magnitude of electron charge
constant cox_prime : real := 3.4515e-8; -- oxide capacitance per unit area F/cm2. cox_prime = EOX/TOX
quantity cox : real := 3.4515e-8;
quantity vds_free : real := 5.0;
quantity vgs_free : real := 0.0;
constant as : real := 15.0e-12; -- source area
constant ad : real := 15.0e-12; -- drain area
begin
------ Setting initial conditions
initreg : break vgs => 0.0, vds => 5.0, vth => 0.5;
thres_volt : vth == vto + (gamma *(sqrt((2.0*phi)-vbs) - sqrt(phi)));
eff_length : leff == L - (2.0*ld);
therm_volt : ktq == 2.586e-2 * (T/300.0);
sat_scurr : iss == js*as;
sat_dcurr : isd == js*ad;
-- gn : beta == 8.85e-05 * (W/L);
gn : beta == kp * ( w/leff);
-- opn : vdsg == 1.0e9 * idsgi; -- almost open
d12_res : vdsr == idsr * rd;
-- g12res : vgsr == igsr * rs;
-- g_oup : vgs == igs * 1.0e9;
-- oup_res : vds == ids * 1.0e9;
oup_res : vds_free == vds;
inp_res : vgs_free == vgs;
gre : vgs == igs * 1.0e9;
capeqn : cox == cox_prime * W * Leff; -- cox_prime * W * Leff
src_res : isr == vsr * rs;
---- Current is in Micro Amps.
-- Normal mode
------ Cut off Region
regions : if((vgs < vth) and (vds >= 0.0))use
gncn : idsg == 1.0e-9 * vds;
------ Linear Region
elsif((vds <= (vgs-vth)) and (vgs >= vth) and (vds >= 0.0)) use
gnln : idsg == vds*beta*((vgs_free-vth) - (vds_free/2.0))*(1.0 + lambda*vds_free);
------ Saturation Region
elsif((vds > vgs-vth) and (vgs >= vth) and (vds >= 0.0)) use
gnsn : idsg == (beta/2.0)*(pow((vgs_free-vth),2.0))*(1.0 + lambda*vds_free);
-- Inversion mode
------ Cut off Region
elsif((vgs < vth) and (vds < 0.0))use
gnci : idsg == 1.0e-9 * vds;
------ Linear Region
elsif(((-1.0*vds) <= (vgs-vth)) and (vgs >= vth) and (vds < 0.0)) use
gnli : idsg == vds*beta*((vgs_free-vth) + (vds_free/2.0))*(1.0 - lambda*vds_free);
------ Saturation Region
elsif(((-1.0*vds) > vgs-vth) and (vgs >= vth) and (vds < 0.0)) use
gnsi : idsg == -1.0*(beta/2.0)*(pow((vgs_free-vth),2.0))*(1.0 - lambda*vds_free);
end use;
----- Substrate diode equations
initsub : break vbd => 0.0, vbs => 0.0, ibs => 0.0, ibd => 0.0;
----- Substrate to source
subcond1 : if(vbs > 0.0) use
bulk1 : ibs == ((iss*(exp(vbs/ktq) - 1.0)) + (gmin*vbs));
elsif(vbs <= 0.0 ) use
bulk2 : ibs == ((iss*(vbs/ktq)) + (gmin*vbs));
end use;
----- Substrate to drain
subcond2 : if(vbd > 0.0) use
bulk3 : ibd == ((isd*(exp(vbd/ktq) - 1.0)) + (gmin*vbd));
elsif(vbd <= 0.0 ) use
bulk4 : ibd == ((isd*(vbd/ktq)) + (gmin*vbd));
end use;
end architecture behav; --- of nmos;
-----------------------------------------------------------------------
-- G B D1 1.0 ohm D
-- o o-----|>|--o---o----/\/\---------o /\
-- | | | | |+
-- Vgs < - Idsg( ) > Vdso
-- > V | < |-
-- | - | | |
-- S1 o------o--o------------------------------o S1V
-- |
-- >
-- < rs= 1.0 ohm
-- |
-- 0 S
-----------------------------------------------------------------------
----- PMOS
--use std.textio.all;
use work.electricalsystem.all;
entity pmos is
generic(mos_type : real := 1.0; -- +1.0 for nmos , -1.0 for pmos
T : real := 300.0;
W : real := 1.0;
L : real := 1.0;
vto : real := 1.0; -- Zero-bais threshold voltage
kp : real := 2.0e-5; -- transcondiuctanec parameter
gamma : real := 0.0; -- body-effect parameter
phi : real := 0.6; -- surface inversion potential
lambda : real := 0.02; -- channel lenght modulation
tox : real := 1.0e-7; -- thin oxide thickness
nsub : real := 0.0; -- Substrate doping
nss : real := 0.0; -- Surface STate density
ld : real := 0.0; -- lateral diffusion;
tpg : real := 1.0; -- Type of Gate material
uo : real := 600.0; -- Surface mobility
af : real := 1.0; -- flicker noise exponent
kf : real := 0.0; -- fliccker noise coefficient
iss : real := 1.0e-14; -- bulk junction saturation current
js : real := 0.0; -- bulk junctioin saturatioin current/ sqr meter
pb : real := 0.80; -- bulk junction potential
cj : real := 0.0; -- Zero-bias bulk capacitance/ sqr meter
mj : real := 0.5; -- bulk junctioin grading coefficient
cjsw : real := 0.0; -- Zero bias perimeter capacitance / sqr meter
mjsw : real := 0.33; -- Perimiter capacitance rading coefficient
fc : real := 0.5; -- forward-bais depletion capacitance coeff
-- cgbo : real := 4.0e-10; -- gate-bulk overlap cap / meter
-- cgdo : real := 1.5e-10; -- gate-drain overlap cap / meter
-- cgso : real := 1.5e-10; -- gate-source overlap cap / meter
cgbo : real := 2.0e-10; -- gate-bulk overlap cap / meter
cgdo : real := 4.0e-11; -- gate-drain overlap cap / meter
cgso : real := 4.0e-11; -- gate-source overlap cap / meter
rd : real := 1.0; -- drain ohmic resistance
rs : real := 1.0; -- source ohmic resistance
rsh : real := 0.0); -- source and drain sheet resistance
port (terminal g,s,d,b : electrical);
end entity pmos;
architecture behav of pmos is
terminal d1, s1 : electrical;
quantity vds across idsg through d1 to s1;
quantity vdsr across idsr through d1 to d;
quantity vgs across igs through g to s1;
quantity vbs across ibs through s1 to b;
quantity vbd across ibd through d1 to b;
-- new quantities added for source resistance
quantity vsr across isr through s1 to s;
quantity iss, isd : real := 1.0e-12;
quantity beta : real := 8.85e-05; -- gain
quantity leff : real := 1.0; -- effective length
constant gmin : real := 1.0e-12;
quantity vth : real := 0.5; -- threshold voltage
quantity ktq : real := 2.586e-2; -- (kT/q) thermal voltage at T=300K
--constant k : real := 1.38e-23; -- J/K ..... boltzman constant
-- T = 300 K ............ Absolute temperature
--constant q : real := 1.60e-19; -- C ....... magnitude of electron charge
constant cox_prime : real := 3.4515e-8; -- oxide capacitance per unit area F/cm2. cox_prime = EOX/TOX
quantity cox : real := 3.4515e-8;
quantity vds_free : real := 5.0;
quantity vgs_free : real := 0.0;
constant as : real := 15.0e-12; -- source area
constant ad : real := 15.0e-12; -- drain area
begin
------ Setting initial conditions
initreg : break vgs => 0.0, vds => 0.0, vth => 0.5;
thres_volt : vth == vto + (gamma *(sqrt((2.0*phi)-vbs) - sqrt(phi)));
eff_length : leff == L - (2.0*ld);
therm_volt : ktq == 2.586e-2 * (T/300.0);
sat_scurr : iss == js*as;
sat_dcurr : isd == js*ad;
-- gn : beta == 8.85e-05 * (W/L);
gn : beta == kp * ( w/leff);
-- opn : vdsg == 1.0e9 * idsgi; -- almost open
d12_res : vdsr == idsr * rd;
-- g12res : vgsr == igsr * rs;
-- g_oup : vgs == igs * 1.0e9;
-- oup_res : vds == ids * 1.0e9;
oup_res : vds_free == vds;
inp_res : vgs_free == vgs;
gre : vgs == igs * 1.0e9;
capeqn : cox == cox_prime * W * Leff; -- cox_prime * W * Leff
src_res : isr == vsr * rs;
---- Current is in Micro Amps.
-- Normal mode
------ Cut off Region
regions : if((vgs > vth) and (vds <= 0.0))use
gncn : idsg == 1.0e-8 * vds;
------ Linear Region
elsif((vds >= (vgs-vth)) and (vgs <= vth) and (vds <= 0.0)) use
gnln : idsg == -1.0*vds*beta*((vgs_free-vth) - (vds_free/2.0))*(1.0 - lambda*vds_free);
------ Saturation Region
elsif((vds < vgs-vth) and (vgs <= vth) and (vds <= 0.0)) use
gnsn : idsg == -1.0*(beta/2.0)*(pow((vgs_free-vth),2.0))*(1.0 - lambda*vds_free);
-- Inversion mode
------ Cut off Region
elsif((vgs > vth) and (vds > 0.0))use
gnci : idsg == 1.0e-9 * vds;
------ Linear Region
elsif(((-1.0*vds) >= (vgs-vth)) and (vgs <= vth) and (vds > 0.0)) use
gnli : idsg == -1.0*vds*beta*((vgs_free-vth) + (vds_free/2.0))*(1.0 + lambda*vds_free);
------ Saturation Region
elsif(((-1.0*vds) < vgs-vth) and (vgs >= vth) and (vds > 0.0)) use
gnsi : idsg == (beta/2.0)*(pow((vgs_free-vth),2.0))*(1.0 + lambda*vds_free);
end use;
----- Substrate diode equations
initsub : break vbd => 0.0, vbs => 0.0, ibs => 0.0, ibd => 0.0;
----- Substrate to source
subcond1 : if(vbs > 0.0) use
bulk1 : ibs == ((iss*(exp(vbs/ktq) - 1.0)) + (gmin*vbs));
elsif(vbs <= 0.0 ) use
bulk2 : ibs == ((iss*(vbs/ktq)) + (gmin*vbs));
end use;
----- Substrate to drain
subcond2 : if(vbd > 0.0) use
bulk3 : ibd == ((isd*(exp(vbd/ktq) - 1.0)) + (gmin*vbd));
elsif(vbd <= 0.0 ) use
bulk4 : ibd == ((isd*(vbd/ktq)) + (gmin*vbd));
end use;
end architecture behav; --- of pmos;
---- DC Voltage source
use work.electricalsystem.all;
entity DCVSrc is
generic (v : real := 10.0); -- voltage
port (terminal pos, neg : electrical);
end entity DCVSrc;
architecture behav of DCVSrc is
terminal temp : electrical;
quantity vdc across idc through temp to neg;
quantity vtemp across itemp through pos to temp;
begin
VSrc : vdc == v;
temp_volt : vtemp == itemp * 1.0e-03;
end architecture behav; --- of DCVSrc
--- ramp source
use work.electricalSystem.all;
ENTITY rampSource IS
GENERIC( amp : real := 1.0);
PORT( TERMINAL ta2,tb2 : electrical);--Interface ports.
END rampSource;
--architecture declaration.
ARCHITECTURE rampbehavior OF rampSource IS
--quantity declarations.
quantity Vramp across Iramp through ta2 to tb2;
BEGIN
-- The sinusoidal voltage source equation.
vsource: Vramp == (amp * real(time'pos(now)) * 1.0e-15) ;
END ARCHITECTURE rampbehavior;
------ inverter circuit
use std.textio.all;
use work.electricalsystem.all;
entity inv is
end entity;
architecture test of inv is
terminal inv_in, inv_src, inv_out : electrical;
quantity vrout across irout through inv_out to electrical'reference;
quantity icout through inv_out to electrical'reference;
-- quantity vin across iin through inv_in to electrical'reference;
-- signal vgs_sig : real := 0.0;
--quantity vdd across asource to electrical'reference;
component nmos_comp is
generic(mos_type : real := 1.0; -- +1.0 for nmos , -1.0 for pmos
T : real := 300.0;
W : real := 1.0;
L : real := 1.0;
vto : real := 1.0; -- Zero-bais threshold voltage
kp : real := 2.0e-5; -- transcondiuctanec parameter
gamma : real := 0.0; -- body-effect parameter
phi : real := 0.6; -- surface inversion potential
lambda : real := 0.02; -- channel lenght modulation
tox : real := 1.0e-7; -- thin oxide thickness
nsub : real := 0.0; -- Substrate doping
nss : real := 0.0; -- Surface STate density
ld : real := 0.0; -- lateral diffusion;
tpg : real := 1.0; -- Type of Gate material
uo : real := 600.0; -- Surface mobility
af : real := 1.0; -- flicker noise exponent
kf : real := 0.0; -- fliccker noise coefficient
iss : real := 1.0e-14; -- bulk junction saturation current
js : real := 0.0; -- bulk junctioin saturatioin current/ sqr meter
pb : real := 0.80; -- bulk junction potential
cj : real := 0.0; -- Zero-bias bulk capacitance/ sqr meter
mj : real := 0.5; -- bulk junctioin grading coefficient
cjsw : real := 0.0; -- Zero bias perimeter capacitance / sqr meter
mjsw : real := 0.33; -- Perimiter capacitance rading coefficient
fc : real := 0.5; -- forward-bais depletion capacitance coeff
-- cgbo : real := 4.0e-10; -- gate-bulk overlap cap / meter
-- cgdo : real := 1.5e-10; -- gate-drain overlap cap / meter
-- cgso : real := 1.5e-10; -- gate-source overlap cap / meter
cgbo : real := 2.0e-10; -- gate-bulk overlap cap / meter
cgdo : real := 4.0e-11; -- gate-drain overlap cap / meter
cgso : real := 4.0e-11; -- gate-source overlap cap / meter
rd : real := 1.0; -- drain ohmic resistance
rs : real := 1.0; -- source ohmic resistance
rsh : real := 0.0); -- source and drain sheet resistance
port (terminal g,s,d,b : electrical);
end component;
for all :nmos_comp use entity work.nmos(behav);
component pmos_comp is
generic(mos_type : real := 1.0; -- +1.0 for nmos , -1.0 for pmos
T : real := 300.0;
W : real := 1.0;
L : real := 1.0;
vto : real := 1.0; -- Zero-bais threshold voltage
kp : real := 2.0e-5; -- transcondiuctanec parameter
gamma : real := 0.0; -- body-effect parameter
phi : real := 0.6; -- surface inversion potential
lambda : real := 0.02; -- channel lenght modulation
tox : real := 1.0e-7; -- thin oxide thickness
nsub : real := 0.0; -- Substrate doping
nss : real := 0.0; -- Surface STate density
ld : real := 0.0; -- lateral diffusion;
tpg : real := 1.0; -- Type of Gate material
uo : real := 600.0; -- Surface mobility
af : real := 1.0; -- flicker noise exponent
kf : real := 0.0; -- fliccker noise coefficient
iss : real := 1.0e-14; -- bulk junction saturation current
js : real := 0.0; -- bulk junctioin saturatioin current/ sqr meter
pb : real := 0.80; -- bulk junction potential
cj : real := 0.0; -- Zero-bias bulk capacitance/ sqr meter
mj : real := 0.5; -- bulk junctioin grading coefficient
cjsw : real := 0.0; -- Zero bias perimeter capacitance / sqr meter
mjsw : real := 0.33; -- Perimiter capacitance rading coefficient
fc : real := 0.5; -- forward-bais depletion capacitance coeff
-- cgbo : real := 4.0e-10; -- gate-bulk overlap cap / meter
-- cgdo : real := 1.5e-10; -- gate-drain overlap cap / meter
-- cgso : real := 1.5e-10; -- gate-source overlap cap / meter
cgbo : real := 2.0e-10; -- gate-bulk overlap cap / meter
cgdo : real := 4.0e-11; -- gate-drain overlap cap / meter
cgso : real := 4.0e-11; -- gate-source overlap cap / meter
rd : real := 1.0; -- drain ohmic resistance
rs : real := 1.0; -- source ohmic resistance
rsh : real := 0.0); -- source and drain sheet resistance
port (terminal g,s,d,b : electrical);
end component;
for all :pmos_comp use entity work.pmos(behav);
component DCVSrc
generic (v : real := 10.0); -- voltage
port (terminal pos, neg : electrical);
end component;
for all : DCVSrc
use entity work.DCVSrc(behav);
component rampSource
GENERIC( amp : real := 1.0);
PORT( TERMINAL ta2,tb2 : electrical);--Interface ports.
END component;
for all : rampsource use entity work.rampsource(rampbehavior);
begin
inpramp : rampsource generic map(5.0e+7)
port map(inv_in, electrical'reference);
inpdc : DCVSrc generic map (5.0)
port map(inv_src, electrical'reference);
nm : nmos_comp
generic map(vto => 0.7, w => 3.0e-6, l => 3.0e-6, cj => 0.00044, cjsw => 4.0e-4, mj => 0.5, mjsw => 0.3, pb => 0.7, js => 1.0e-5)
-- generic map(mos_type => 1.0, vto => 0.7, w => 3.0e-6, l => 3.0e-6, kp => 4.0e-5, gamma => 1.1, phi => 0.6, lambda => 0.01, cgso => 3.0e-10, cgdo => 3.0e-10, cgbo => 5.0e-10, cj => 0.00044, cjsw => 4.0e-4, mj => 0.5, mjsw => 0.3, pb => 0.7, js => 1.0e-5, ld => 3.5e-7)
port map(inv_in, electrical'reference, inv_out, electrical'reference);
pm : pmos_comp
generic map(vto => -0.7, w => 9.0e-6, l => 3.0e-6, cj => 0.00015, cjsw => 4.0e-4, mj => 0.6, mjsw => 0.6, pb => 0.6, js => 1.0e-5)
-- generic map(mos_type => -1.0, vto => -0.8, w => 9.0e-6, l => 3.0e-6, kp => 1.2e-5, gamma => 0.6, phi => 0.6, lambda => 0.03, cgso => 2.5e-10, cgdo => 2.5e-10, cgbo => 5.0e-10, cj => 0.00015, cjsw => 4.0e-4, mj => 0.6, mjsw => 0.6, pb => 0.6, js => 1.0e-5, ld => 2.5e-7)
port map(inv_in, inv_src, inv_out, inv_src);
oupres : vrout == irout * 1.0e9;
oupcap : icout == 1.0e-13 * vrout'dot;
brkcap : break vrout => 5.0;
end architecture test; -- inv
|