1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
-- Copyright (C) 2001 Bill Billowitch.
-- Some of the work to develop this test suite was done with Air Force
-- support. The Air Force and Bill Billowitch assume no
-- responsibilities for this software.
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: tc1348.vhd,v 1.2 2001-10-26 16:29:40 paw Exp $
-- $Revision: 1.2 $
--
-- ---------------------------------------------------------------------
ENTITY c08s04b01x00p07n01i01348ent IS
END c08s04b01x00p07n01i01348ent;
ARCHITECTURE c08s04b01x00p07n01i01348arch OF c08s04b01x00p07n01i01348ent IS
-- Local signals.
signal S : BIT := '0';
BEGIN
TESTING: PROCESS
-- local variables.
variable S_INITIAL : BIT;
variable ShouldBeTime : TIME;
variable k : integer := 0;
BEGIN
-- 0. Keep around the initial value of S.
S_INITIAL := S;
-- 1. When no preemption necessary, verify the results.
S <= transport (not S) after 10 ns, (S) after 20 ns;
-- a. Wait for first transaction.
ShouldBeTime := NOW + 10 ns;
wait on S;
if (ShouldBeTime /= now or S /= not S_INITIAL) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
assert (S = (not S_INITIAL));
-- b. Wait for second transaction.
ShouldBeTime := NOW + 10 ns;
wait on S;
assert (ShouldBeTime = NOW);
assert (S = S_INITIAL);
-- 2. Preempt a transaction which is to occur at the same time as second one.
S_INITIAL := S;
S <= transport (S) after 10 ns;
S <= transport (not S) after 10 ns; -- Should preempt first transaction.
-- a. Verify that the second transaction comes as expected.
ShouldBeTime := NOW + 10 ns;
wait on S;
if (ShouldBeTime /= now or S /= not S_INITIAL) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
assert (S = (not S_INITIAL));
-- b. Verify that the first transaction has been preempted.
ShouldBeTime := NOW + 10 ns;
wait on S for 10 ns;
if (ShouldBeTime /= now) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
-- 3. Preempt a transaction which is to occur at a later time than second one.
S_INITIAL := S;
S <= transport (S) after 15 ns;
S <= transport (not S) after 10 ns; -- Should preempt first transaction.
-- a. Verify that the second transaction comes as expected.
ShouldBeTime := NOW + 10 ns;
wait on S;
if (ShouldBeTime /= now or S /= not S_INITIAL) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
assert (S = (not S_INITIAL));
-- b. Verify that the first transaction has been preempted.
ShouldBeTime := NOW + 10 ns;
wait on S for 10 ns;
if (ShouldBeTime /= now) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
-- 4. Preempt multiple transactions.
S_INITIAL := S;
S <= transport (S) after 15 ns, (not S) after 30 ns;
S <= transport (not S) after 10 ns, (S) after 20 ns;
-- a. Verify that the second transactions come as expected.
ShouldBeTime := NOW + 10 ns;
wait on S;
if (ShouldBeTime /= now or S /= not S_INITIAL) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
assert (S = (not S_INITIAL));
ShouldBeTime := NOW + 10 ns;
wait on S;
if (ShouldBeTime /= now or S /= S_INITIAL) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
assert (S = S_INITIAL);
-- b. Verify that the first transactions have been preempted.
ShouldBeTime := NOW + 40 ns;
wait on S for 40 ns;
if (ShouldBeTime /= now) then
k := 1;
end if;
assert (ShouldBeTime = NOW);
assert NOT( k=0 )
report "***PASSED TEST: c08s04b01x00p07n01i01348"
severity NOTE;
assert ( k=0 )
report "***FAILED TEST: c08s04b01x00p07n01i01348 - The sequence of transactions is used to update the projected output waveform representing the current and future values of the driver associated with the signal assignment statement."
severity ERROR;
wait;
END PROCESS TESTING;
END c08s04b01x00p07n01i01348arch;
|