1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
-- Copyright (C) 1996 Morgan Kaufmann Publishers, Inc
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: ch_15_mem-pl.vhd,v 1.3 2001-10-26 16:29:36 paw Exp $
-- $Revision: 1.3 $
--
-- ---------------------------------------------------------------------
library bv_utilities;
use bv_utilities.bv_arithmetic.all;
architecture preloaded of memory is
begin
mem_behavior : process is
constant high_address : natural := mem_size - 1;
type memory_array is
array (natural range 0 to high_address / 4) of dlx_bv_word;
variable mem : memory_array
:= ( X"20020000", -- addi r2, r0, 0
X"ac020018", -- loop: sw counter(r0), r2
X"20420001", -- addi r2, r2, 1
X"6441000a", -- snei r1, r2, 10
X"1420fff0", -- bnez r1, loop
X"44000000", -- trap 0
X"00000000", -- counter: .word 0
others => X"00000000" );
variable byte_address, word_address : natural;
variable write_access : boolean;
procedure do_write is
subtype ls_2_bits is bit_vector(1 downto 0);
begin
case width is
when dlx_mem_width_word =>
mem(word_address) := to_bitvector(d);
when dlx_mem_width_halfword =>
if To_bit(a(1)) = '0' then -- ms half word
mem(word_address)(0 to 15) := to_bitvector( d(0 to 15) );
else -- ls half word
mem(word_address)(16 to 31) := to_bitvector( d(16 to 31) );
end if;
when dlx_mem_width_byte =>
case ls_2_bits'(To_bitvector(a(1 downto 0))) is
when b"00" =>
mem(word_address)(0 to 7) := to_bitvector( d(0 to 7) );
when b"01" =>
mem(word_address)(8 to 15) := to_bitvector( d(8 to 15) );
when b"10" =>
mem(word_address)(16 to 23) := to_bitvector( d(16 to 23) );
when b"11" =>
mem(word_address)(24 to 31) := to_bitvector( d(24 to 31) );
end case;
when others =>
report "illegal width indicator in write" severity error;
end case;
end do_write;
procedure do_read is
begin
d <= To_X01( mem(word_address) );
end do_read;
begin
-- initialize outputs
d <= disabled_dlx_word;
ready <= '0';
-- process memory cycles
loop
-- wait for a command, valid on leading edge of phi2
wait on phi2 until rising_edge(phi2) and To_bit(mem_enable) = '1';
-- decode address and perform command if selected
byte_address := bv_to_natural(To_bitvector(a));
write_access := To_bit(write_enable) = '1';
if byte_address <= high_address then
word_address := byte_address / 4;
if write_access then -- write cycle
do_write;
wait for Tac_first; -- write access time, 1st cycle
else -- read cycle
wait for Tac_first; -- read access time, 1st cycle
do_read;
end if;
-- ready synchronous with phi2
wait until rising_edge(phi2);
ready <= '1' after Tpd_clk_out;
wait until falling_edge(phi2);
ready <= '0' after Tpd_clk_out;
-- do subsequent cycles in burst
while To_bit(burst) = '1' loop
word_address := (word_address + 1) mod (mem_size / 4);
wait until rising_edge(phi2);
if write_access then -- write cycle
do_write;
wait for Tac_burst; -- write access time, burst cycle
else -- read cycle
wait for Tac_burst; -- read access time, burst cycle
do_read;
end if;
-- ready synchronous with phi2
wait until rising_edge(phi2);
ready <= '1' after Tpd_clk_out;
wait until falling_edge(phi2);
ready <= '0' after Tpd_clk_out;
end loop;
if not write_access then -- was read
d <= disabled_dlx_word after Tpd_clk_out;
end if;
end if;
end loop;
end process mem_behavior;
end architecture preloaded;
|