1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity qq4_code4_table is
port (
clk : in std_logic;
ra0_data : out std_logic_vector(31 downto 0);
ra0_addr : in std_logic_vector(3 downto 0)
);
end qq4_code4_table;
architecture augh of qq4_code4_table is
-- Embedded RAM
type ram_type is array (0 to 15) of std_logic_vector(31 downto 0);
signal ram : ram_type := ("00000000000000000000000000000000", "11111111111111111011000000011000", "11111111111111111100110110100000", "11111111111111111101110011111000", "11111111111111111110011101110000", "11111111111111111110111101110000", "11111111111111111111010111101000", "11111111111111111111101101010000", "00000000000000000100111111101000", "00000000000000000011001001100000", "00000000000000000010001100001000", "00000000000000000001100010010000", "00000000000000000001000010010000", "00000000000000000000101000011000", "00000000000000000000010010110000", "00000000000000000000000000000000");
-- Little utility functions to make VHDL syntactically correct
-- with the syntax to_integer(unsigned(vector)) when 'vector' is a std_logic.
-- This happens when accessing arrays with <= 2 cells, for example.
function to_integer(B: std_logic) return integer is
variable V: std_logic_vector(0 to 0);
begin
V(0) := B;
return to_integer(unsigned(V));
end;
function to_integer(V: std_logic_vector) return integer is
begin
return to_integer(unsigned(V));
end;
begin
-- The component is a ROM.
-- There is no Write side.
-- The Read side (the outputs)
ra0_data <= ram( to_integer(ra0_addr) );
end architecture;
|